MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprnglin Structured version   Visualization version   GIF version

Theorem rngqiprnglin 21263
Description: 𝐹 is linear with respect to the multiplication. (Contributed by AV, 28-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprnglin (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎 · 𝑏)) = ((𝐹𝑎)(.r𝑃)(𝐹𝑏)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥   𝑥,   𝑥, 1   𝑥, ·   𝐵,𝑎,𝑏   𝐹,𝑎,𝑏   𝑃,𝑎,𝑏   𝑅,𝑎,𝑏,𝑥   𝜑,𝑎,𝑏   𝐽,𝑎   𝑄,𝑎   𝐶,𝑎,𝑏   𝐼,𝑎,𝑏   ,𝑎   1 ,𝑎   · ,𝑎
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥,𝑏)   (𝑏)   · (𝑏)   1 (𝑏)   𝐹(𝑥)   𝐽(𝑥,𝑏)

Proof of Theorem rngqiprnglin
StepHypRef Expression
1 rngqiprngim.p . . . . 5 𝑃 = (𝑄 ×s 𝐽)
2 eqid 2735 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
3 eqid 2735 . . . . 5 (Base‘𝐽) = (Base‘𝐽)
4 rngqiprngim.q . . . . . . 7 𝑄 = (𝑅 /s )
54ovexi 7439 . . . . . 6 𝑄 ∈ V
65a1i 11 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑄 ∈ V)
7 rng2idlring.u . . . . . 6 (𝜑𝐽 ∈ Ring)
87adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝐽 ∈ Ring)
9 rng2idlring.r . . . . . 6 (𝜑𝑅 ∈ Rng)
10 simpl 482 . . . . . 6 ((𝑎𝐵𝑏𝐵) → 𝑎𝐵)
11 rngqiprngim.g . . . . . . 7 = (𝑅 ~QG 𝐼)
12 rng2idlring.b . . . . . . 7 𝐵 = (Base‘𝑅)
1311, 4, 12, 2quseccl0 19168 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑎𝐵) → [𝑎] ∈ (Base‘𝑄))
149, 10, 13syl2an 596 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → [𝑎] ∈ (Base‘𝑄))
15 rng2idlring.i . . . . . . 7 (𝜑𝐼 ∈ (2Ideal‘𝑅))
16 rng2idlring.j . . . . . . 7 𝐽 = (𝑅s 𝐼)
17 rng2idlring.t . . . . . . 7 · = (.r𝑅)
18 rng2idlring.1 . . . . . . 7 1 = (1r𝐽)
199, 15, 16, 7, 12, 17, 18rngqiprngghmlem1 21248 . . . . . 6 ((𝜑𝑎𝐵) → ( 1 · 𝑎) ∈ (Base‘𝐽))
2010, 19sylan2 593 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( 1 · 𝑎) ∈ (Base‘𝐽))
21 simpr 484 . . . . . 6 ((𝑎𝐵𝑏𝐵) → 𝑏𝐵)
2211, 4, 12, 2quseccl0 19168 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑏𝐵) → [𝑏] ∈ (Base‘𝑄))
239, 21, 22syl2an 596 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → [𝑏] ∈ (Base‘𝑄))
249, 15, 16, 7, 12, 17, 18rngqiprngghmlem1 21248 . . . . . 6 ((𝜑𝑏𝐵) → ( 1 · 𝑏) ∈ (Base‘𝐽))
2521, 24sylan2 593 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( 1 · 𝑏) ∈ (Base‘𝐽))
269, 15, 16, 7, 12, 17, 18, 11, 4rngqiprnglinlem3 21254 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ([𝑎] (.r𝑄)[𝑏] ) ∈ (Base‘𝑄))
27 eqid 2735 . . . . . 6 (.r𝐽) = (.r𝐽)
283, 27, 8, 20, 25ringcld 20220 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (( 1 · 𝑎)(.r𝐽)( 1 · 𝑏)) ∈ (Base‘𝐽))
29 eqid 2735 . . . . 5 (.r𝑄) = (.r𝑄)
30 eqid 2735 . . . . 5 (.r𝑃) = (.r𝑃)
311, 2, 3, 6, 8, 14, 20, 23, 25, 26, 28, 29, 27, 30xpsmul 17589 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (⟨[𝑎] , ( 1 · 𝑎)⟩(.r𝑃)⟨[𝑏] , ( 1 · 𝑏)⟩) = ⟨([𝑎] (.r𝑄)[𝑏] ), (( 1 · 𝑎)(.r𝐽)( 1 · 𝑏))⟩)
329, 15, 16, 7, 12, 17, 18, 11, 4rngqiprnglinlem2 21253 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → [(𝑎 · 𝑏)] = ([𝑎] (.r𝑄)[𝑏] ))
3332eqcomd 2741 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ([𝑎] (.r𝑄)[𝑏] ) = [(𝑎 · 𝑏)] )
3415adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝐼 ∈ (2Ideal‘𝑅))
3516, 17ressmulr 17321 . . . . . . . . 9 (𝐼 ∈ (2Ideal‘𝑅) → · = (.r𝐽))
3634, 35syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → · = (.r𝐽))
3736eqcomd 2741 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (.r𝐽) = · )
3837oveqd 7422 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (( 1 · 𝑎)(.r𝐽)( 1 · 𝑏)) = (( 1 · 𝑎) · ( 1 · 𝑏)))
399, 15, 16, 7, 12, 17, 18rngqiprnglinlem1 21252 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (( 1 · 𝑎) · ( 1 · 𝑏)) = ( 1 · (𝑎 · 𝑏)))
4038, 39eqtrd 2770 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (( 1 · 𝑎)(.r𝐽)( 1 · 𝑏)) = ( 1 · (𝑎 · 𝑏)))
4133, 40opeq12d 4857 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ⟨([𝑎] (.r𝑄)[𝑏] ), (( 1 · 𝑎)(.r𝐽)( 1 · 𝑏))⟩ = ⟨[(𝑎 · 𝑏)] , ( 1 · (𝑎 · 𝑏))⟩)
4231, 41eqtr2d 2771 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ⟨[(𝑎 · 𝑏)] , ( 1 · (𝑎 · 𝑏))⟩ = (⟨[𝑎] , ( 1 · 𝑎)⟩(.r𝑃)⟨[𝑏] , ( 1 · 𝑏)⟩))
439anim1i 615 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑅 ∈ Rng ∧ (𝑎𝐵𝑏𝐵)))
44 3anass 1094 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑎𝐵𝑏𝐵) ↔ (𝑅 ∈ Rng ∧ (𝑎𝐵𝑏𝐵)))
4543, 44sylibr 234 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑅 ∈ Rng ∧ 𝑎𝐵𝑏𝐵))
4612, 17rngcl 20124 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑎𝐵𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
4745, 46syl 17 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
48 rngqiprngim.c . . . . 5 𝐶 = (Base‘𝑄)
49 rngqiprngim.f . . . . 5 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
509, 15, 16, 7, 12, 17, 18, 11, 4, 48, 1, 49rngqiprngimfv 21259 . . . 4 ((𝜑 ∧ (𝑎 · 𝑏) ∈ 𝐵) → (𝐹‘(𝑎 · 𝑏)) = ⟨[(𝑎 · 𝑏)] , ( 1 · (𝑎 · 𝑏))⟩)
5147, 50syldan 591 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎 · 𝑏)) = ⟨[(𝑎 · 𝑏)] , ( 1 · (𝑎 · 𝑏))⟩)
529, 15, 16, 7, 12, 17, 18, 11, 4, 48, 1, 49rngqiprngimfv 21259 . . . . 5 ((𝜑𝑎𝐵) → (𝐹𝑎) = ⟨[𝑎] , ( 1 · 𝑎)⟩)
5310, 52sylan2 593 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) = ⟨[𝑎] , ( 1 · 𝑎)⟩)
549, 15, 16, 7, 12, 17, 18, 11, 4, 48, 1, 49rngqiprngimfv 21259 . . . . 5 ((𝜑𝑏𝐵) → (𝐹𝑏) = ⟨[𝑏] , ( 1 · 𝑏)⟩)
5521, 54sylan2 593 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) = ⟨[𝑏] , ( 1 · 𝑏)⟩)
5653, 55oveq12d 7423 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(.r𝑃)(𝐹𝑏)) = (⟨[𝑎] , ( 1 · 𝑎)⟩(.r𝑃)⟨[𝑏] , ( 1 · 𝑏)⟩))
5742, 51, 563eqtr4d 2780 . 2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎 · 𝑏)) = ((𝐹𝑎)(.r𝑃)(𝐹𝑏)))
5857ralrimivva 3187 1 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎 · 𝑏)) = ((𝐹𝑎)(.r𝑃)(𝐹𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cop 4607  cmpt 5201  cfv 6531  (class class class)co 7405  [cec 8717  Basecbs 17228  s cress 17251  .rcmulr 17272   /s cqus 17519   ×s cxps 17520   ~QG cqg 19105  Rngcrng 20112  1rcur 20141  Ringcrg 20193  2Idealc2idl 21210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-imas 17522  df-qus 17523  df-xps 17524  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-eqg 19108  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-subrng 20506  df-lss 20889  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-2idl 21211
This theorem is referenced by:  rngqiprngho  21264
  Copyright terms: Public domain W3C validator