Step | Hyp | Ref
| Expression |
1 | | rngqiprngim.p |
. . . . 5
β’ π = (π Γs π½) |
2 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
3 | | eqid 2732 |
. . . . 5
β’
(Baseβπ½) =
(Baseβπ½) |
4 | | rngqiprngim.q |
. . . . . . 7
β’ π = (π
/s βΌ ) |
5 | 4 | ovexi 7439 |
. . . . . 6
β’ π β V |
6 | 5 | a1i 11 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β π β V) |
7 | | rng2idlring.u |
. . . . . 6
β’ (π β π½ β Ring) |
8 | 7 | adantr 481 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β π½ β Ring) |
9 | | rng2idlring.r |
. . . . . 6
β’ (π β π
β Rng) |
10 | | simpl 483 |
. . . . . 6
β’ ((π β π΅ β§ π β π΅) β π β π΅) |
11 | | rngqiprngim.g |
. . . . . . 7
β’ βΌ =
(π
~QG
πΌ) |
12 | | rng2idlring.b |
. . . . . . 7
β’ π΅ = (Baseβπ
) |
13 | 11, 4, 12, 2 | quseccl0 19058 |
. . . . . 6
β’ ((π
β Rng β§ π β π΅) β [π] βΌ β
(Baseβπ)) |
14 | 9, 10, 13 | syl2an 596 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β [π] βΌ β
(Baseβπ)) |
15 | | rng2idlring.i |
. . . . . . 7
β’ (π β πΌ β (2Idealβπ
)) |
16 | | rng2idlring.j |
. . . . . . 7
β’ π½ = (π
βΎs πΌ) |
17 | | rng2idlring.t |
. . . . . . 7
β’ Β· =
(.rβπ
) |
18 | | rng2idlring.1 |
. . . . . . 7
β’ 1 =
(1rβπ½) |
19 | 9, 15, 16, 7, 12, 17, 18 | rngqiprngghmlem1 46752 |
. . . . . 6
β’ ((π β§ π β π΅) β ( 1 Β· π) β (Baseβπ½)) |
20 | 10, 19 | sylan2 593 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β ( 1 Β· π) β (Baseβπ½)) |
21 | | simpr 485 |
. . . . . 6
β’ ((π β π΅ β§ π β π΅) β π β π΅) |
22 | 11, 4, 12, 2 | quseccl0 19058 |
. . . . . 6
β’ ((π
β Rng β§ π β π΅) β [π] βΌ β
(Baseβπ)) |
23 | 9, 21, 22 | syl2an 596 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β [π] βΌ β
(Baseβπ)) |
24 | 9, 15, 16, 7, 12, 17, 18 | rngqiprngghmlem1 46752 |
. . . . . 6
β’ ((π β§ π β π΅) β ( 1 Β· π) β (Baseβπ½)) |
25 | 21, 24 | sylan2 593 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β ( 1 Β· π) β (Baseβπ½)) |
26 | 9, 15, 16, 7, 12, 17, 18, 11, 4 | rngqiprnglinlem3 46758 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β ([π] βΌ
(.rβπ)[π] βΌ ) β
(Baseβπ)) |
27 | | eqid 2732 |
. . . . . 6
β’
(.rβπ½) = (.rβπ½) |
28 | 3, 27, 8, 20, 25 | ringcld 20073 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β (( 1 Β· π)(.rβπ½)( 1 Β· π)) β (Baseβπ½)) |
29 | | eqid 2732 |
. . . . 5
β’
(.rβπ) = (.rβπ) |
30 | | eqid 2732 |
. . . . 5
β’
(.rβπ) = (.rβπ) |
31 | 1, 2, 3, 6, 8, 14,
20, 23, 25, 26, 28, 29, 27, 30 | xpsmul 17517 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (β¨[π] βΌ , ( 1 Β· π)β©(.rβπ)β¨[π] βΌ , ( 1 Β· π)β©) = β¨([π] βΌ
(.rβπ)[π] βΌ ), (( 1 Β· π)(.rβπ½)( 1 Β· π))β©) |
32 | 9, 15, 16, 7, 12, 17, 18, 11, 4 | rngqiprnglinlem2 46757 |
. . . . . 6
β’ ((π β§ (π β π΅ β§ π β π΅)) β [(π Β· π)] βΌ = ([π] βΌ
(.rβπ)[π] βΌ )) |
33 | 32 | eqcomd 2738 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β ([π] βΌ
(.rβπ)[π] βΌ ) = [(π Β· π)] βΌ ) |
34 | 15 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π β π΅ β§ π β π΅)) β πΌ β (2Idealβπ
)) |
35 | 16, 17 | ressmulr 17248 |
. . . . . . . . 9
β’ (πΌ β (2Idealβπ
) β Β· =
(.rβπ½)) |
36 | 34, 35 | syl 17 |
. . . . . . . 8
β’ ((π β§ (π β π΅ β§ π β π΅)) β Β· =
(.rβπ½)) |
37 | 36 | eqcomd 2738 |
. . . . . . 7
β’ ((π β§ (π β π΅ β§ π β π΅)) β (.rβπ½) = Β· ) |
38 | 37 | oveqd 7422 |
. . . . . 6
β’ ((π β§ (π β π΅ β§ π β π΅)) β (( 1 Β· π)(.rβπ½)( 1 Β· π)) = (( 1 Β· π) Β· ( 1 Β· π))) |
39 | 9, 15, 16, 7, 12, 17, 18 | rngqiprnglinlem1 46756 |
. . . . . 6
β’ ((π β§ (π β π΅ β§ π β π΅)) β (( 1 Β· π) Β· ( 1 Β· π)) = ( 1 Β· (π Β· π))) |
40 | 38, 39 | eqtrd 2772 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β (( 1 Β· π)(.rβπ½)( 1 Β· π)) = ( 1 Β· (π Β· π))) |
41 | 33, 40 | opeq12d 4880 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β β¨([π] βΌ
(.rβπ)[π] βΌ ), (( 1 Β· π)(.rβπ½)( 1 Β· π))β© = β¨[(π Β· π)] βΌ , ( 1 Β· (π Β· π))β©) |
42 | 31, 41 | eqtr2d 2773 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β β¨[(π Β· π)] βΌ , ( 1 Β· (π Β· π))β© = (β¨[π] βΌ , ( 1 Β· π)β©(.rβπ)β¨[π] βΌ , ( 1 Β· π)β©)) |
43 | 9 | anim1i 615 |
. . . . . 6
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π
β Rng β§ (π β π΅ β§ π β π΅))) |
44 | | 3anass 1095 |
. . . . . 6
β’ ((π
β Rng β§ π β π΅ β§ π β π΅) β (π
β Rng β§ (π β π΅ β§ π β π΅))) |
45 | 43, 44 | sylibr 233 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π
β Rng β§ π β π΅ β§ π β π΅)) |
46 | 12, 17 | rngcl 46649 |
. . . . 5
β’ ((π
β Rng β§ π β π΅ β§ π β π΅) β (π Β· π) β π΅) |
47 | 45, 46 | syl 17 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π Β· π) β π΅) |
48 | | rngqiprngim.c |
. . . . 5
β’ πΆ = (Baseβπ) |
49 | | rngqiprngim.f |
. . . . 5
β’ πΉ = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) |
50 | 9, 15, 16, 7, 12, 17, 18, 11, 4, 48, 1, 49 | rngqiprngimfv 46763 |
. . . 4
β’ ((π β§ (π Β· π) β π΅) β (πΉβ(π Β· π)) = β¨[(π Β· π)] βΌ , ( 1 Β· (π Β· π))β©) |
51 | 47, 50 | syldan 591 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π Β· π)) = β¨[(π Β· π)] βΌ , ( 1 Β· (π Β· π))β©) |
52 | 9, 15, 16, 7, 12, 17, 18, 11, 4, 48, 1, 49 | rngqiprngimfv 46763 |
. . . . 5
β’ ((π β§ π β π΅) β (πΉβπ) = β¨[π] βΌ , ( 1 Β· π)β©) |
53 | 10, 52 | sylan2 593 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβπ) = β¨[π] βΌ , ( 1 Β· π)β©) |
54 | 9, 15, 16, 7, 12, 17, 18, 11, 4, 48, 1, 49 | rngqiprngimfv 46763 |
. . . . 5
β’ ((π β§ π β π΅) β (πΉβπ) = β¨[π] βΌ , ( 1 Β· π)β©) |
55 | 21, 54 | sylan2 593 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβπ) = β¨[π] βΌ , ( 1 Β· π)β©) |
56 | 53, 55 | oveq12d 7423 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((πΉβπ)(.rβπ)(πΉβπ)) = (β¨[π] βΌ , ( 1 Β· π)β©(.rβπ)β¨[π] βΌ , ( 1 Β· π)β©)) |
57 | 42, 51, 56 | 3eqtr4d 2782 |
. 2
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π Β· π)) = ((πΉβπ)(.rβπ)(πΉβπ))) |
58 | 57 | ralrimivva 3200 |
1
β’ (π β βπ β π΅ βπ β π΅ (πΉβ(π Β· π)) = ((πΉβπ)(.rβπ)(πΉβπ))) |