MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngfu Structured version   Visualization version   GIF version

Theorem rngqiprngfu 21283
Description: The function value of 𝐹 at the constructed expected ring unity of 𝑅 is the ring unity of the product of the quotient with the two-sided ideal and the two-sided ideal. (Contributed by AV, 16-Mar-2025.)
Hypotheses
Ref Expression
rngqiprngfu.r (𝜑𝑅 ∈ Rng)
rngqiprngfu.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rngqiprngfu.j 𝐽 = (𝑅s 𝐼)
rngqiprngfu.u (𝜑𝐽 ∈ Ring)
rngqiprngfu.b 𝐵 = (Base‘𝑅)
rngqiprngfu.t · = (.r𝑅)
rngqiprngfu.1 1 = (1r𝐽)
rngqiprngfu.g = (𝑅 ~QG 𝐼)
rngqiprngfu.q 𝑄 = (𝑅 /s )
rngqiprngfu.v (𝜑𝑄 ∈ Ring)
rngqiprngfu.e (𝜑𝐸 ∈ (1r𝑄))
rngqiprngfu.m = (-g𝑅)
rngqiprngfu.a + = (+g𝑅)
rngqiprngfu.n 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
rngqiprngfu.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngfu (𝜑 → (𝐹𝑈) = ⟨[𝐸] , 1 ⟩)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐸   𝑥,𝑄   𝑥,   𝜑,𝑥   𝑥,𝐼   𝑥,𝑈   𝑥, 1   𝑥, ·
Allowed substitution hints:   + (𝑥)   𝑅(𝑥)   𝐹(𝑥)   𝐽(𝑥)   (𝑥)

Proof of Theorem rngqiprngfu
StepHypRef Expression
1 rngqiprngfu.r . . . 4 (𝜑𝑅 ∈ Rng)
2 rngqiprngfu.i . . . 4 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 rngqiprngfu.j . . . 4 𝐽 = (𝑅s 𝐼)
4 rngqiprngfu.u . . . 4 (𝜑𝐽 ∈ Ring)
5 rngqiprngfu.b . . . 4 𝐵 = (Base‘𝑅)
6 rngqiprngfu.t . . . 4 · = (.r𝑅)
7 rngqiprngfu.1 . . . 4 1 = (1r𝐽)
8 rngqiprngfu.g . . . 4 = (𝑅 ~QG 𝐼)
9 rngqiprngfu.q . . . 4 𝑄 = (𝑅 /s )
10 rngqiprngfu.v . . . 4 (𝜑𝑄 ∈ Ring)
11 rngqiprngfu.e . . . 4 (𝜑𝐸 ∈ (1r𝑄))
12 rngqiprngfu.m . . . 4 = (-g𝑅)
13 rngqiprngfu.a . . . 4 + = (+g𝑅)
14 rngqiprngfu.n . . . 4 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14rngqiprngfulem3 21279 . . 3 (𝜑𝑈𝐵)
16 eqid 2736 . . . 4 (Base‘𝑄) = (Base‘𝑄)
17 eqid 2736 . . . 4 (𝑄 ×s 𝐽) = (𝑄 ×s 𝐽)
18 rngqiprngfu.f . . . 4 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
191, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18rngqiprngimfv 21264 . . 3 ((𝜑𝑈𝐵) → (𝐹𝑈) = ⟨[𝑈] , ( 1 · 𝑈)⟩)
2015, 19mpdan 687 . 2 (𝜑 → (𝐹𝑈) = ⟨[𝑈] , ( 1 · 𝑈)⟩)
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14rngqiprngfulem4 21280 . . 3 (𝜑 → [𝑈] = [𝐸] )
221, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14rngqiprngfulem5 21281 . . 3 (𝜑 → ( 1 · 𝑈) = 1 )
2321, 22opeq12d 4862 . 2 (𝜑 → ⟨[𝑈] , ( 1 · 𝑈)⟩ = ⟨[𝐸] , 1 ⟩)
2420, 23eqtrd 2771 1 (𝜑 → (𝐹𝑈) = ⟨[𝐸] , 1 ⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4612  cmpt 5206  cfv 6536  (class class class)co 7410  [cec 8722  Basecbs 17233  s cress 17256  +gcplusg 17276  .rcmulr 17277   /s cqus 17524   ×s cxps 17525  -gcsg 18923   ~QG cqg 19110  Rngcrng 20117  1rcur 20146  Ringcrg 20198  2Idealc2idl 21215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-ec 8726  df-qs 8730  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-0g 17460  df-imas 17527  df-qus 17528  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-nsg 19112  df-eqg 19113  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-subrng 20511  df-lss 20894  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-2idl 21216
This theorem is referenced by:  rngqiprngu  21284
  Copyright terms: Public domain W3C validator