| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnxrnres | Structured version Visualization version GIF version | ||
| Description: Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021.) |
| Ref | Expression |
|---|---|
| rnxrnres | ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnxrn 38372 | . 2 ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦)} | |
| 2 | brres 5941 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑢(𝑆 ↾ 𝐴)𝑦 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦))) | |
| 3 | 2 | elv 3443 | . . . . . . 7 ⊢ (𝑢(𝑆 ↾ 𝐴)𝑦 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦)) |
| 4 | 3 | anbi2i 623 | . . . . . 6 ⊢ ((𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ (𝑢𝑅𝑥 ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦))) |
| 5 | an12 645 | . . . . . 6 ⊢ ((𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ (𝑢𝑅𝑥 ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦))) | |
| 6 | 4, 5 | bitr4i 278 | . . . . 5 ⊢ ((𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ (𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
| 7 | 6 | exbii 1848 | . . . 4 ⊢ (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
| 8 | df-rex 3054 | . . . 4 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
| 9 | 7, 8 | bitr4i 278 | . . 3 ⊢ (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
| 10 | 9 | opabbii 5162 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
| 11 | 1, 10 | eqtri 2752 | 1 ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 class class class wbr 5095 {copab 5157 ran crn 5624 ↾ cres 5625 ⋉ cxrn 38156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-1st 7931 df-2nd 7932 df-ec 8634 df-xrn 38341 |
| This theorem is referenced by: rnxrncnvepres 38374 rnxrnidres 38375 |
| Copyright terms: Public domain | W3C validator |