Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnxrnres Structured version   Visualization version   GIF version

Theorem rnxrnres 36452
Description: Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021.)
Assertion
Ref Expression
rnxrnres ran (𝑅 ⋉ (𝑆𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦)}
Distinct variable groups:   𝑢,𝐴,𝑥,𝑦   𝑢,𝑅,𝑥,𝑦   𝑢,𝑆,𝑥,𝑦

Proof of Theorem rnxrnres
StepHypRef Expression
1 rnxrn 36451 . 2 ran (𝑅 ⋉ (𝑆𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦)}
2 brres 5887 . . . . . . . 8 (𝑦 ∈ V → (𝑢(𝑆𝐴)𝑦 ↔ (𝑢𝐴𝑢𝑆𝑦)))
32elv 3428 . . . . . . 7 (𝑢(𝑆𝐴)𝑦 ↔ (𝑢𝐴𝑢𝑆𝑦))
43anbi2i 622 . . . . . 6 ((𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ (𝑢𝑅𝑥 ∧ (𝑢𝐴𝑢𝑆𝑦)))
5 an12 641 . . . . . 6 ((𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ (𝑢𝑅𝑥 ∧ (𝑢𝐴𝑢𝑆𝑦)))
64, 5bitr4i 277 . . . . 5 ((𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ (𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
76exbii 1851 . . . 4 (∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
8 df-rex 3069 . . . 4 (∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
97, 8bitr4i 277 . . 3 (∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦))
109opabbii 5137 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦)}
111, 10eqtri 2766 1 ran (𝑅 ⋉ (𝑆𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  Vcvv 3422   class class class wbr 5070  {copab 5132  ran crn 5581  cres 5582  cxrn 36259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-ec 8458  df-xrn 36428
This theorem is referenced by:  rnxrncnvepres  36453  rnxrnidres  36454
  Copyright terms: Public domain W3C validator