Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnxrnres Structured version   Visualization version   GIF version

Theorem rnxrnres 38392
Description: Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021.)
Assertion
Ref Expression
rnxrnres ran (𝑅 ⋉ (𝑆𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦)}
Distinct variable groups:   𝑢,𝐴,𝑥,𝑦   𝑢,𝑅,𝑥,𝑦   𝑢,𝑆,𝑥,𝑦

Proof of Theorem rnxrnres
StepHypRef Expression
1 rnxrn 38391 . 2 ran (𝑅 ⋉ (𝑆𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦)}
2 brres 5960 . . . . . . . 8 (𝑦 ∈ V → (𝑢(𝑆𝐴)𝑦 ↔ (𝑢𝐴𝑢𝑆𝑦)))
32elv 3455 . . . . . . 7 (𝑢(𝑆𝐴)𝑦 ↔ (𝑢𝐴𝑢𝑆𝑦))
43anbi2i 623 . . . . . 6 ((𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ (𝑢𝑅𝑥 ∧ (𝑢𝐴𝑢𝑆𝑦)))
5 an12 645 . . . . . 6 ((𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ (𝑢𝑅𝑥 ∧ (𝑢𝐴𝑢𝑆𝑦)))
64, 5bitr4i 278 . . . . 5 ((𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ (𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
76exbii 1848 . . . 4 (∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
8 df-rex 3055 . . . 4 (∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
97, 8bitr4i 278 . . 3 (∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦))
109opabbii 5177 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦)}
111, 10eqtri 2753 1 ran (𝑅 ⋉ (𝑆𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054  Vcvv 3450   class class class wbr 5110  {copab 5172  ran crn 5642  cres 5643  cxrn 38175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-1st 7971  df-2nd 7972  df-ec 8676  df-xrn 38360
This theorem is referenced by:  rnxrncnvepres  38393  rnxrnidres  38394
  Copyright terms: Public domain W3C validator