Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnxrnres Structured version   Visualization version   GIF version

Theorem rnxrnres 37782
Description: Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021.)
Assertion
Ref Expression
rnxrnres ran (𝑅 ⋉ (𝑆𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦)}
Distinct variable groups:   𝑢,𝐴,𝑥,𝑦   𝑢,𝑅,𝑥,𝑦   𝑢,𝑆,𝑥,𝑦

Proof of Theorem rnxrnres
StepHypRef Expression
1 rnxrn 37781 . 2 ran (𝑅 ⋉ (𝑆𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦)}
2 brres 5982 . . . . . . . 8 (𝑦 ∈ V → (𝑢(𝑆𝐴)𝑦 ↔ (𝑢𝐴𝑢𝑆𝑦)))
32elv 3474 . . . . . . 7 (𝑢(𝑆𝐴)𝑦 ↔ (𝑢𝐴𝑢𝑆𝑦))
43anbi2i 622 . . . . . 6 ((𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ (𝑢𝑅𝑥 ∧ (𝑢𝐴𝑢𝑆𝑦)))
5 an12 642 . . . . . 6 ((𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ (𝑢𝑅𝑥 ∧ (𝑢𝐴𝑢𝑆𝑦)))
64, 5bitr4i 278 . . . . 5 ((𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ (𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
76exbii 1842 . . . 4 (∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
8 df-rex 3065 . . . 4 (∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
97, 8bitr4i 278 . . 3 (∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦))
109opabbii 5208 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦)}
111, 10eqtri 2754 1 ran (𝑅 ⋉ (𝑆𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wex 1773  wcel 2098  wrex 3064  Vcvv 3468   class class class wbr 5141  {copab 5203  ran crn 5670  cres 5671  cxrn 37555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-fo 6543  df-fv 6545  df-1st 7974  df-2nd 7975  df-ec 8707  df-xrn 37754
This theorem is referenced by:  rnxrncnvepres  37783  rnxrnidres  37784
  Copyright terms: Public domain W3C validator