Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnxrnres Structured version   Visualization version   GIF version

Theorem rnxrnres 38519
Description: Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021.)
Assertion
Ref Expression
rnxrnres ran (𝑅 ⋉ (𝑆𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦)}
Distinct variable groups:   𝑢,𝐴,𝑥,𝑦   𝑢,𝑅,𝑥,𝑦   𝑢,𝑆,𝑥,𝑦

Proof of Theorem rnxrnres
StepHypRef Expression
1 rnxrn 38518 . 2 ran (𝑅 ⋉ (𝑆𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦)}
2 brres 5942 . . . . . . . 8 (𝑦 ∈ V → (𝑢(𝑆𝐴)𝑦 ↔ (𝑢𝐴𝑢𝑆𝑦)))
32elv 3442 . . . . . . 7 (𝑢(𝑆𝐴)𝑦 ↔ (𝑢𝐴𝑢𝑆𝑦))
43anbi2i 623 . . . . . 6 ((𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ (𝑢𝑅𝑥 ∧ (𝑢𝐴𝑢𝑆𝑦)))
5 an12 645 . . . . . 6 ((𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ (𝑢𝑅𝑥 ∧ (𝑢𝐴𝑢𝑆𝑦)))
64, 5bitr4i 278 . . . . 5 ((𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ (𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
76exbii 1849 . . . 4 (∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
8 df-rex 3058 . . . 4 (∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦) ↔ ∃𝑢(𝑢𝐴 ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
97, 8bitr4i 278 . . 3 (∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦) ↔ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦))
109opabbii 5162 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢(𝑆𝐴)𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦)}
111, 10eqtri 2756 1 ran (𝑅 ⋉ (𝑆𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢𝑆𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wrex 3057  Vcvv 3437   class class class wbr 5095  {copab 5157  ran crn 5622  cres 5623  cxrn 38287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fo 6495  df-fv 6497  df-1st 7930  df-2nd 7931  df-ec 8633  df-xrn 38477
This theorem is referenced by:  rnxrncnvepres  38520  rnxrnidres  38521
  Copyright terms: Public domain W3C validator