Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnxrnres | Structured version Visualization version GIF version |
Description: Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021.) |
Ref | Expression |
---|---|
rnxrnres | ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnxrn 36261 | . 2 ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦)} | |
2 | brres 5858 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑢(𝑆 ↾ 𝐴)𝑦 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦))) | |
3 | 2 | elv 3414 | . . . . . . 7 ⊢ (𝑢(𝑆 ↾ 𝐴)𝑦 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦)) |
4 | 3 | anbi2i 626 | . . . . . 6 ⊢ ((𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ (𝑢𝑅𝑥 ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦))) |
5 | an12 645 | . . . . . 6 ⊢ ((𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ (𝑢𝑅𝑥 ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦))) | |
6 | 4, 5 | bitr4i 281 | . . . . 5 ⊢ ((𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ (𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
7 | 6 | exbii 1855 | . . . 4 ⊢ (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
8 | df-rex 3067 | . . . 4 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
9 | 7, 8 | bitr4i 281 | . . 3 ⊢ (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
10 | 9 | opabbii 5120 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
11 | 1, 10 | eqtri 2765 | 1 ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2110 ∃wrex 3062 Vcvv 3408 class class class wbr 5053 {copab 5115 ran crn 5552 ↾ cres 5553 ⋉ cxrn 36069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fo 6386 df-fv 6388 df-1st 7761 df-2nd 7762 df-ec 8393 df-xrn 36238 |
This theorem is referenced by: rnxrncnvepres 36263 rnxrnidres 36264 |
Copyright terms: Public domain | W3C validator |