|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnxrnres | Structured version Visualization version GIF version | ||
| Description: Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| rnxrnres | ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rnxrn 38400 | . 2 ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦)} | |
| 2 | brres 6003 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑢(𝑆 ↾ 𝐴)𝑦 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦))) | |
| 3 | 2 | elv 3484 | . . . . . . 7 ⊢ (𝑢(𝑆 ↾ 𝐴)𝑦 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦)) | 
| 4 | 3 | anbi2i 623 | . . . . . 6 ⊢ ((𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ (𝑢𝑅𝑥 ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦))) | 
| 5 | an12 645 | . . . . . 6 ⊢ ((𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ (𝑢𝑅𝑥 ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦))) | |
| 6 | 4, 5 | bitr4i 278 | . . . . 5 ⊢ ((𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ (𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | 
| 7 | 6 | exbii 1847 | . . . 4 ⊢ (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | 
| 8 | df-rex 3070 | . . . 4 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
| 9 | 7, 8 | bitr4i 278 | . . 3 ⊢ (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) | 
| 10 | 9 | opabbii 5209 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | 
| 11 | 1, 10 | eqtri 2764 | 1 ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃wrex 3069 Vcvv 3479 class class class wbr 5142 {copab 5204 ran crn 5685 ↾ cres 5686 ⋉ cxrn 38182 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fo 6566 df-fv 6568 df-1st 8015 df-2nd 8016 df-ec 8748 df-xrn 38373 | 
| This theorem is referenced by: rnxrncnvepres 38402 rnxrnidres 38403 | 
| Copyright terms: Public domain | W3C validator |