| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnxrnres | Structured version Visualization version GIF version | ||
| Description: Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021.) |
| Ref | Expression |
|---|---|
| rnxrnres | ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnxrn 38436 | . 2 ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦)} | |
| 2 | brres 5935 | . . . . . . . 8 ⊢ (𝑦 ∈ V → (𝑢(𝑆 ↾ 𝐴)𝑦 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦))) | |
| 3 | 2 | elv 3441 | . . . . . . 7 ⊢ (𝑢(𝑆 ↾ 𝐴)𝑦 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦)) |
| 4 | 3 | anbi2i 623 | . . . . . 6 ⊢ ((𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ (𝑢𝑅𝑥 ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦))) |
| 5 | an12 645 | . . . . . 6 ⊢ ((𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ (𝑢𝑅𝑥 ∧ (𝑢 ∈ 𝐴 ∧ 𝑢𝑆𝑦))) | |
| 6 | 4, 5 | bitr4i 278 | . . . . 5 ⊢ ((𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ (𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
| 7 | 6 | exbii 1849 | . . . 4 ⊢ (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
| 8 | df-rex 3057 | . . . 4 ⊢ (∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ ∃𝑢(𝑢 ∈ 𝐴 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
| 9 | 7, 8 | bitr4i 278 | . . 3 ⊢ (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
| 10 | 9 | opabbii 5158 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢(𝑆 ↾ 𝐴)𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
| 11 | 1, 10 | eqtri 2754 | 1 ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 class class class wbr 5091 {copab 5153 ran crn 5617 ↾ cres 5618 ⋉ cxrn 38220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-ec 8624 df-xrn 38405 |
| This theorem is referenced by: rnxrncnvepres 38438 rnxrnidres 38439 |
| Copyright terms: Public domain | W3C validator |