Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfveq0 Structured version   Visualization version   GIF version

Theorem signstfveq0 34568
Description: In case the last letter is zero, the zero skipping sign is the same as the previous letter. (Contributed by Thierry Arnoux, 11-Oct-2018.) (Proof shortened by AV, 4-Nov-2022.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signstfveq0.1 𝑁 = (♯‘𝐹)
Assertion
Ref Expression
signstfveq0 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝐹,𝑎,𝑏,𝑓,𝑖,𝑛   𝑁,𝑎   𝑓,𝑏,𝑖,𝑛,𝑁   𝑇,𝑎,𝑏
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛)   𝐹(𝑗)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfveq0
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ (Word ℝ ∖ {∅}))
21eldifad 3926 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ Word ℝ)
3 pfxcl 14642 . . . . 5 (𝐹 ∈ Word ℝ → (𝐹 prefix (𝑁 − 1)) ∈ Word ℝ)
42, 3syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) ∈ Word ℝ)
5 1nn0 12458 . . . . . . . . . . 11 1 ∈ ℕ0
65a1i 11 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℕ0)
76nn0red 12504 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℝ)
8 2re 12260 . . . . . . . . . . . 12 2 ∈ ℝ
98a1i 11 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ∈ ℝ)
10 signstfveq0.1 . . . . . . . . . . . . 13 𝑁 = (♯‘𝐹)
11 lencl 14498 . . . . . . . . . . . . . 14 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
122, 11syl 17 . . . . . . . . . . . . 13 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (♯‘𝐹) ∈ ℕ0)
1310, 12eqeltrid 2832 . . . . . . . . . . . 12 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ0)
1413nn0red 12504 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℝ)
15 1le2 12390 . . . . . . . . . . . 12 1 ≤ 2
1615a1i 11 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ≤ 2)
17 signsv.p . . . . . . . . . . . . . 14 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
18 signsv.w . . . . . . . . . . . . . 14 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
19 signsv.t . . . . . . . . . . . . . 14 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
20 signsv.v . . . . . . . . . . . . . 14 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
2117, 18, 19, 20, 10signstfveq0a 34567 . . . . . . . . . . . . 13 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ (ℤ‘2))
22 eluz2 12799 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
2321, 22sylib 218 . . . . . . . . . . . 12 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
2423simp3d 1144 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ≤ 𝑁)
257, 9, 14, 16, 24letrd 11331 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ≤ 𝑁)
26 fznn0 13580 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 1 ≤ 𝑁)))
2713, 26syl 17 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 1 ≤ 𝑁)))
286, 25, 27mpbir2and 713 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ (0...𝑁))
29 fznn0sub2 13596 . . . . . . . . 9 (1 ∈ (0...𝑁) → (𝑁 − 1) ∈ (0...𝑁))
3028, 29syl 17 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ (0...𝑁))
3110oveq2i 7398 . . . . . . . 8 (0...𝑁) = (0...(♯‘𝐹))
3230, 31eleqtrdi 2838 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ (0...(♯‘𝐹)))
33 pfxlen 14648 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ (𝑁 − 1) ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix (𝑁 − 1))) = (𝑁 − 1))
342, 32, 33syl2anc 584 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (♯‘(𝐹 prefix (𝑁 − 1))) = (𝑁 − 1))
35 uz2m1nn 12882 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
3621, 35syl 17 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ ℕ)
3734, 36eqeltrd 2828 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (♯‘(𝐹 prefix (𝑁 − 1))) ∈ ℕ)
38 nnne0 12220 . . . . . 6 ((♯‘(𝐹 prefix (𝑁 − 1))) ∈ ℕ → (♯‘(𝐹 prefix (𝑁 − 1))) ≠ 0)
39 fveq2 6858 . . . . . . . 8 ((𝐹 prefix (𝑁 − 1)) = ∅ → (♯‘(𝐹 prefix (𝑁 − 1))) = (♯‘∅))
40 hash0 14332 . . . . . . . 8 (♯‘∅) = 0
4139, 40eqtrdi 2780 . . . . . . 7 ((𝐹 prefix (𝑁 − 1)) = ∅ → (♯‘(𝐹 prefix (𝑁 − 1))) = 0)
4241necon3i 2957 . . . . . 6 ((♯‘(𝐹 prefix (𝑁 − 1))) ≠ 0 → (𝐹 prefix (𝑁 − 1)) ≠ ∅)
4338, 42syl 17 . . . . 5 ((♯‘(𝐹 prefix (𝑁 − 1))) ∈ ℕ → (𝐹 prefix (𝑁 − 1)) ≠ ∅)
4437, 43syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) ≠ ∅)
45 eldifsn 4750 . . . 4 ((𝐹 prefix (𝑁 − 1)) ∈ (Word ℝ ∖ {∅}) ↔ ((𝐹 prefix (𝑁 − 1)) ∈ Word ℝ ∧ (𝐹 prefix (𝑁 − 1)) ≠ ∅))
464, 44, 45sylanbrc 583 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) ∈ (Word ℝ ∖ {∅}))
47 simpr 484 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) = 0)
48 0re 11176 . . . 4 0 ∈ ℝ
4947, 48eqeltrdi 2836 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) ∈ ℝ)
5017, 18, 19, 20signstfvn 34560 . . 3 (((𝐹 prefix (𝑁 − 1)) ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ∈ ℝ) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 prefix (𝑁 − 1)))) = (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))))
5146, 49, 50syl2anc 584 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 prefix (𝑁 − 1)))) = (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))))
5210oveq1i 7397 . . . . . . . 8 (𝑁 − 1) = ((♯‘𝐹) − 1)
5352oveq2i 7398 . . . . . . 7 (𝐹 prefix (𝑁 − 1)) = (𝐹 prefix ((♯‘𝐹) − 1))
5453a1i 11 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) = (𝐹 prefix ((♯‘𝐹) − 1)))
55 lsw 14529 . . . . . . . . . 10 (𝐹 ∈ (Word ℝ ∖ {∅}) → (lastS‘𝐹) = (𝐹‘((♯‘𝐹) − 1)))
5655ad2antrr 726 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (lastS‘𝐹) = (𝐹‘((♯‘𝐹) − 1)))
5710eqcomi 2738 . . . . . . . . . . 11 (♯‘𝐹) = 𝑁
5857oveq1i 7397 . . . . . . . . . 10 ((♯‘𝐹) − 1) = (𝑁 − 1)
5958fveq2i 6861 . . . . . . . . 9 (𝐹‘((♯‘𝐹) − 1)) = (𝐹‘(𝑁 − 1))
6056, 59eqtrdi 2780 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (lastS‘𝐹) = (𝐹‘(𝑁 − 1)))
6160s1eqd 14566 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ⟨“(lastS‘𝐹)”⟩ = ⟨“(𝐹‘(𝑁 − 1))”⟩)
6261eqcomd 2735 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ⟨“(𝐹‘(𝑁 − 1))”⟩ = ⟨“(lastS‘𝐹)”⟩)
6354, 62oveq12d 7405 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩) = ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩))
64 eldifsn 4750 . . . . . . 7 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
651, 64sylib 218 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
66 pfxlswccat 14678 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩) = 𝐹)
6765, 66syl 17 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩) = 𝐹)
6863, 67eqtrd 2764 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩) = 𝐹)
6968fveq2d 6862 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩)) = (𝑇𝐹))
7069, 34fveq12d 6865 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 prefix (𝑁 − 1)))) = ((𝑇𝐹)‘(𝑁 − 1)))
7113nn0cnd 12505 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℂ)
72 1cnd 11169 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℂ)
7371, 72, 72subsub4d 11564 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
74 1p1e2 12306 . . . . . . . . . 10 (1 + 1) = 2
7574oveq2i 7398 . . . . . . . . 9 (𝑁 − (1 + 1)) = (𝑁 − 2)
7673, 75eqtrdi 2780 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) = (𝑁 − 2))
77 fzo0end 13719 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ (0..^(𝑁 − 1)))
7836, 77syl 17 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) ∈ (0..^(𝑁 − 1)))
7976, 78eqeltrrd 2829 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
8034oveq2d 7403 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (0..^(♯‘(𝐹 prefix (𝑁 − 1)))) = (0..^(𝑁 − 1)))
8179, 80eleqtrrd 2831 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(♯‘(𝐹 prefix (𝑁 − 1)))))
8217, 18, 19, 20signstfvp 34562 . . . . . 6 (((𝐹 prefix (𝑁 − 1)) ∈ Word ℝ ∧ (𝐹‘(𝑁 − 1)) ∈ ℝ ∧ (𝑁 − 2) ∈ (0..^(♯‘(𝐹 prefix (𝑁 − 1))))) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)) = ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘(𝑁 − 2)))
834, 49, 81, 82syl3anc 1373 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)) = ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘(𝑁 − 2)))
8468eqcomd 2735 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 = ((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))
8584fveq2d 6862 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑇𝐹) = (𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩)))
8685fveq1d 6860 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 2)) = ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)))
8734oveq1d 7402 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((♯‘(𝐹 prefix (𝑁 − 1))) − 1) = ((𝑁 − 1) − 1))
8887, 73eqtrd 2764 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((♯‘(𝐹 prefix (𝑁 − 1))) − 1) = (𝑁 − (1 + 1)))
8988, 75eqtrdi 2780 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((♯‘(𝐹 prefix (𝑁 − 1))) − 1) = (𝑁 − 2))
9089fveq2d 6862 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) = ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘(𝑁 − 2)))
9183, 86, 903eqtr4rd 2775 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
92 fveq2 6858 . . . . . 6 ((𝐹‘(𝑁 − 1)) = 0 → (sgn‘(𝐹‘(𝑁 − 1))) = (sgn‘0))
93 sgn0 15055 . . . . . 6 (sgn‘0) = 0
9492, 93eqtrdi 2780 . . . . 5 ((𝐹‘(𝑁 − 1)) = 0 → (sgn‘(𝐹‘(𝑁 − 1))) = 0)
9594adantl 481 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (sgn‘(𝐹‘(𝑁 − 1))) = 0)
9691, 95oveq12d 7405 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))) = (((𝑇𝐹)‘(𝑁 − 2)) 0))
97 uznn0sub 12832 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
9821, 97syl 17 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ ℕ0)
99 eluz2nn 12847 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
10021, 99syl 17 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ)
101 2rp 12956 . . . . . . . . 9 2 ∈ ℝ+
102101a1i 11 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ∈ ℝ+)
10314, 102ltsubrpd 13027 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) < 𝑁)
104 elfzo0 13661 . . . . . . 7 ((𝑁 − 2) ∈ (0..^𝑁) ↔ ((𝑁 − 2) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑁 − 2) < 𝑁))
10598, 100, 103, 104syl3anbrc 1344 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^𝑁))
10610oveq2i 7398 . . . . . 6 (0..^𝑁) = (0..^(♯‘𝐹))
107105, 106eleqtrdi 2838 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(♯‘𝐹)))
10817, 18, 19, 20signstcl 34556 . . . . 5 ((𝐹 ∈ Word ℝ ∧ (𝑁 − 2) ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1})
1092, 107, 108syl2anc 584 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1})
11017, 18signswrid 34549 . . . 4 (((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1} → (((𝑇𝐹)‘(𝑁 − 2)) 0) = ((𝑇𝐹)‘(𝑁 − 2)))
111109, 110syl 17 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇𝐹)‘(𝑁 − 2)) 0) = ((𝑇𝐹)‘(𝑁 − 2)))
11296, 111eqtrd 2764 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))) = ((𝑇𝐹)‘(𝑁 − 2)))
11351, 70, 1123eqtr3d 2772 1 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3911  c0 4296  ifcif 4488  {csn 4589  {cpr 4591  {ctp 4593  cop 4595   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cmpo 7389  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  -cneg 11406  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  +crp 12951  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478  lastSclsw 14527   ++ cconcat 14535  ⟨“cs1 14560   prefix cpfx 14635  sgncsgn 15052  Σcsu 15652  ndxcnx 17163  Basecbs 17179  +gcplusg 17220   Σg cgsu 17403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-sgn 15053  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator