Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfveq0 Structured version   Visualization version   GIF version

Theorem signstfveq0 31835
 Description: In case the last letter is zero, the zero skipping sign is the same as the previous letter. (Contributed by Thierry Arnoux, 11-Oct-2018.) (Proof shortened by AV, 4-Nov-2022.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signstfveq0.1 𝑁 = (♯‘𝐹)
Assertion
Ref Expression
signstfveq0 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝐹,𝑎,𝑏,𝑓,𝑖,𝑛   𝑁,𝑎   𝑓,𝑏,𝑖,𝑛,𝑁   𝑇,𝑎,𝑏
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛)   𝐹(𝑗)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfveq0
StepHypRef Expression
1 simpll 765 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ (Word ℝ ∖ {∅}))
21eldifad 3946 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ Word ℝ)
3 pfxcl 14031 . . . . 5 (𝐹 ∈ Word ℝ → (𝐹 prefix (𝑁 − 1)) ∈ Word ℝ)
42, 3syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) ∈ Word ℝ)
5 1nn0 11905 . . . . . . . . . . 11 1 ∈ ℕ0
65a1i 11 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℕ0)
76nn0red 11948 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℝ)
8 2re 11703 . . . . . . . . . . . 12 2 ∈ ℝ
98a1i 11 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ∈ ℝ)
10 signstfveq0.1 . . . . . . . . . . . . 13 𝑁 = (♯‘𝐹)
11 lencl 13875 . . . . . . . . . . . . . 14 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
122, 11syl 17 . . . . . . . . . . . . 13 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (♯‘𝐹) ∈ ℕ0)
1310, 12eqeltrid 2915 . . . . . . . . . . . 12 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ0)
1413nn0red 11948 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℝ)
15 1le2 11838 . . . . . . . . . . . 12 1 ≤ 2
1615a1i 11 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ≤ 2)
17 signsv.p . . . . . . . . . . . . . 14 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
18 signsv.w . . . . . . . . . . . . . 14 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
19 signsv.t . . . . . . . . . . . . . 14 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
20 signsv.v . . . . . . . . . . . . . 14 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
2117, 18, 19, 20, 10signstfveq0a 31834 . . . . . . . . . . . . 13 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ (ℤ‘2))
22 eluz2 12241 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
2321, 22sylib 220 . . . . . . . . . . . 12 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
2423simp3d 1138 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ≤ 𝑁)
257, 9, 14, 16, 24letrd 10789 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ≤ 𝑁)
26 fznn0 12991 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 1 ≤ 𝑁)))
2713, 26syl 17 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 1 ≤ 𝑁)))
286, 25, 27mpbir2and 711 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ (0...𝑁))
29 fznn0sub2 13006 . . . . . . . . 9 (1 ∈ (0...𝑁) → (𝑁 − 1) ∈ (0...𝑁))
3028, 29syl 17 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ (0...𝑁))
3110oveq2i 7159 . . . . . . . 8 (0...𝑁) = (0...(♯‘𝐹))
3230, 31eleqtrdi 2921 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ (0...(♯‘𝐹)))
33 pfxlen 14037 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ (𝑁 − 1) ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix (𝑁 − 1))) = (𝑁 − 1))
342, 32, 33syl2anc 586 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (♯‘(𝐹 prefix (𝑁 − 1))) = (𝑁 − 1))
35 uz2m1nn 12315 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
3621, 35syl 17 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ ℕ)
3734, 36eqeltrd 2911 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (♯‘(𝐹 prefix (𝑁 − 1))) ∈ ℕ)
38 nnne0 11663 . . . . . 6 ((♯‘(𝐹 prefix (𝑁 − 1))) ∈ ℕ → (♯‘(𝐹 prefix (𝑁 − 1))) ≠ 0)
39 fveq2 6663 . . . . . . . 8 ((𝐹 prefix (𝑁 − 1)) = ∅ → (♯‘(𝐹 prefix (𝑁 − 1))) = (♯‘∅))
40 hash0 13720 . . . . . . . 8 (♯‘∅) = 0
4139, 40syl6eq 2870 . . . . . . 7 ((𝐹 prefix (𝑁 − 1)) = ∅ → (♯‘(𝐹 prefix (𝑁 − 1))) = 0)
4241necon3i 3046 . . . . . 6 ((♯‘(𝐹 prefix (𝑁 − 1))) ≠ 0 → (𝐹 prefix (𝑁 − 1)) ≠ ∅)
4338, 42syl 17 . . . . 5 ((♯‘(𝐹 prefix (𝑁 − 1))) ∈ ℕ → (𝐹 prefix (𝑁 − 1)) ≠ ∅)
4437, 43syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) ≠ ∅)
45 eldifsn 4711 . . . 4 ((𝐹 prefix (𝑁 − 1)) ∈ (Word ℝ ∖ {∅}) ↔ ((𝐹 prefix (𝑁 − 1)) ∈ Word ℝ ∧ (𝐹 prefix (𝑁 − 1)) ≠ ∅))
464, 44, 45sylanbrc 585 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) ∈ (Word ℝ ∖ {∅}))
47 simpr 487 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) = 0)
48 0re 10635 . . . 4 0 ∈ ℝ
4947, 48syl6eqel 2919 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) ∈ ℝ)
5017, 18, 19, 20signstfvn 31827 . . 3 (((𝐹 prefix (𝑁 − 1)) ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ∈ ℝ) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 prefix (𝑁 − 1)))) = (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))))
5146, 49, 50syl2anc 586 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 prefix (𝑁 − 1)))) = (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))))
5210oveq1i 7158 . . . . . . . 8 (𝑁 − 1) = ((♯‘𝐹) − 1)
5352oveq2i 7159 . . . . . . 7 (𝐹 prefix (𝑁 − 1)) = (𝐹 prefix ((♯‘𝐹) − 1))
5453a1i 11 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) = (𝐹 prefix ((♯‘𝐹) − 1)))
55 lsw 13908 . . . . . . . . . 10 (𝐹 ∈ (Word ℝ ∖ {∅}) → (lastS‘𝐹) = (𝐹‘((♯‘𝐹) − 1)))
5655ad2antrr 724 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (lastS‘𝐹) = (𝐹‘((♯‘𝐹) − 1)))
5710eqcomi 2828 . . . . . . . . . . 11 (♯‘𝐹) = 𝑁
5857oveq1i 7158 . . . . . . . . . 10 ((♯‘𝐹) − 1) = (𝑁 − 1)
5958fveq2i 6666 . . . . . . . . 9 (𝐹‘((♯‘𝐹) − 1)) = (𝐹‘(𝑁 − 1))
6056, 59syl6eq 2870 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (lastS‘𝐹) = (𝐹‘(𝑁 − 1)))
6160s1eqd 13947 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ⟨“(lastS‘𝐹)”⟩ = ⟨“(𝐹‘(𝑁 − 1))”⟩)
6261eqcomd 2825 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ⟨“(𝐹‘(𝑁 − 1))”⟩ = ⟨“(lastS‘𝐹)”⟩)
6354, 62oveq12d 7166 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩) = ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩))
64 eldifsn 4711 . . . . . . 7 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
651, 64sylib 220 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
66 pfxlswccat 14067 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩) = 𝐹)
6765, 66syl 17 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩) = 𝐹)
6863, 67eqtrd 2854 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩) = 𝐹)
6968fveq2d 6667 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩)) = (𝑇𝐹))
7069, 34fveq12d 6670 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 prefix (𝑁 − 1)))) = ((𝑇𝐹)‘(𝑁 − 1)))
7113nn0cnd 11949 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℂ)
72 1cnd 10628 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℂ)
7371, 72, 72subsub4d 11020 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
74 1p1e2 11754 . . . . . . . . . 10 (1 + 1) = 2
7574oveq2i 7159 . . . . . . . . 9 (𝑁 − (1 + 1)) = (𝑁 − 2)
7673, 75syl6eq 2870 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) = (𝑁 − 2))
77 fzo0end 13121 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ (0..^(𝑁 − 1)))
7836, 77syl 17 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) ∈ (0..^(𝑁 − 1)))
7976, 78eqeltrrd 2912 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
8034oveq2d 7164 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (0..^(♯‘(𝐹 prefix (𝑁 − 1)))) = (0..^(𝑁 − 1)))
8179, 80eleqtrrd 2914 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(♯‘(𝐹 prefix (𝑁 − 1)))))
8217, 18, 19, 20signstfvp 31829 . . . . . 6 (((𝐹 prefix (𝑁 − 1)) ∈ Word ℝ ∧ (𝐹‘(𝑁 − 1)) ∈ ℝ ∧ (𝑁 − 2) ∈ (0..^(♯‘(𝐹 prefix (𝑁 − 1))))) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)) = ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘(𝑁 − 2)))
834, 49, 81, 82syl3anc 1365 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)) = ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘(𝑁 − 2)))
8468eqcomd 2825 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 = ((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))
8584fveq2d 6667 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑇𝐹) = (𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩)))
8685fveq1d 6665 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 2)) = ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)))
8734oveq1d 7163 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((♯‘(𝐹 prefix (𝑁 − 1))) − 1) = ((𝑁 − 1) − 1))
8887, 73eqtrd 2854 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((♯‘(𝐹 prefix (𝑁 − 1))) − 1) = (𝑁 − (1 + 1)))
8988, 75syl6eq 2870 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((♯‘(𝐹 prefix (𝑁 − 1))) − 1) = (𝑁 − 2))
9089fveq2d 6667 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) = ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘(𝑁 − 2)))
9183, 86, 903eqtr4rd 2865 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
92 fveq2 6663 . . . . . 6 ((𝐹‘(𝑁 − 1)) = 0 → (sgn‘(𝐹‘(𝑁 − 1))) = (sgn‘0))
93 sgn0 14440 . . . . . 6 (sgn‘0) = 0
9492, 93syl6eq 2870 . . . . 5 ((𝐹‘(𝑁 − 1)) = 0 → (sgn‘(𝐹‘(𝑁 − 1))) = 0)
9594adantl 484 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (sgn‘(𝐹‘(𝑁 − 1))) = 0)
9691, 95oveq12d 7166 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))) = (((𝑇𝐹)‘(𝑁 − 2)) 0))
97 uznn0sub 12269 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
9821, 97syl 17 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ ℕ0)
99 eluz2nn 12276 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
10021, 99syl 17 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ)
101 2rp 12386 . . . . . . . . 9 2 ∈ ℝ+
102101a1i 11 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ∈ ℝ+)
10314, 102ltsubrpd 12455 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) < 𝑁)
104 elfzo0 13070 . . . . . . 7 ((𝑁 − 2) ∈ (0..^𝑁) ↔ ((𝑁 − 2) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑁 − 2) < 𝑁))
10598, 100, 103, 104syl3anbrc 1337 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^𝑁))
10610oveq2i 7159 . . . . . 6 (0..^𝑁) = (0..^(♯‘𝐹))
107105, 106eleqtrdi 2921 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(♯‘𝐹)))
10817, 18, 19, 20signstcl 31823 . . . . 5 ((𝐹 ∈ Word ℝ ∧ (𝑁 − 2) ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1})
1092, 107, 108syl2anc 586 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1})
11017, 18signswrid 31816 . . . 4 (((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1} → (((𝑇𝐹)‘(𝑁 − 2)) 0) = ((𝑇𝐹)‘(𝑁 − 2)))
111109, 110syl 17 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇𝐹)‘(𝑁 − 2)) 0) = ((𝑇𝐹)‘(𝑁 − 2)))
11296, 111eqtrd 2854 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))) = ((𝑇𝐹)‘(𝑁 − 2)))
11351, 70, 1123eqtr3d 2862 1 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3014   ∖ cdif 3931  ∅c0 4289  ifcif 4465  {csn 4559  {cpr 4561  {ctp 4563  ⟨cop 4565   class class class wbr 5057   ↦ cmpt 5137  ‘cfv 6348  (class class class)co 7148   ∈ cmpo 7150  ℝcr 10528  0cc0 10529  1c1 10530   + caddc 10532   < clt 10667   ≤ cle 10668   − cmin 10862  -cneg 10863  ℕcn 11630  2c2 11684  ℕ0cn0 11889  ℤcz 11973  ℤ≥cuz 12235  ℝ+crp 12381  ...cfz 12884  ..^cfzo 13025  ♯chash 13682  Word cword 13853  lastSclsw 13906   ++ cconcat 13914  ⟨“cs1 13941   prefix cpfx 14024  sgncsgn 14437  Σcsu 15034  ndxcnx 16472  Basecbs 16475  +gcplusg 16557   Σg cgsu 16706 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-word 13854  df-lsw 13907  df-concat 13915  df-s1 13942  df-substr 13995  df-pfx 14025  df-sgn 14438  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator