Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfveq0 Structured version   Visualization version   GIF version

Theorem signstfveq0 32556
Description: In case the last letter is zero, the zero skipping sign is the same as the previous letter. (Contributed by Thierry Arnoux, 11-Oct-2018.) (Proof shortened by AV, 4-Nov-2022.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signstfveq0.1 𝑁 = (♯‘𝐹)
Assertion
Ref Expression
signstfveq0 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝐹,𝑎,𝑏,𝑓,𝑖,𝑛   𝑁,𝑎   𝑓,𝑏,𝑖,𝑛,𝑁   𝑇,𝑎,𝑏
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛)   𝐹(𝑗)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfveq0
StepHypRef Expression
1 simpll 764 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ (Word ℝ ∖ {∅}))
21eldifad 3899 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ Word ℝ)
3 pfxcl 14390 . . . . 5 (𝐹 ∈ Word ℝ → (𝐹 prefix (𝑁 − 1)) ∈ Word ℝ)
42, 3syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) ∈ Word ℝ)
5 1nn0 12249 . . . . . . . . . . 11 1 ∈ ℕ0
65a1i 11 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℕ0)
76nn0red 12294 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℝ)
8 2re 12047 . . . . . . . . . . . 12 2 ∈ ℝ
98a1i 11 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ∈ ℝ)
10 signstfveq0.1 . . . . . . . . . . . . 13 𝑁 = (♯‘𝐹)
11 lencl 14236 . . . . . . . . . . . . . 14 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
122, 11syl 17 . . . . . . . . . . . . 13 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (♯‘𝐹) ∈ ℕ0)
1310, 12eqeltrid 2843 . . . . . . . . . . . 12 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ0)
1413nn0red 12294 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℝ)
15 1le2 12182 . . . . . . . . . . . 12 1 ≤ 2
1615a1i 11 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ≤ 2)
17 signsv.p . . . . . . . . . . . . . 14 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
18 signsv.w . . . . . . . . . . . . . 14 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
19 signsv.t . . . . . . . . . . . . . 14 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
20 signsv.v . . . . . . . . . . . . . 14 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
2117, 18, 19, 20, 10signstfveq0a 32555 . . . . . . . . . . . . 13 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ (ℤ‘2))
22 eluz2 12588 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
2321, 22sylib 217 . . . . . . . . . . . 12 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
2423simp3d 1143 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ≤ 𝑁)
257, 9, 14, 16, 24letrd 11132 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ≤ 𝑁)
26 fznn0 13348 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 1 ≤ 𝑁)))
2713, 26syl 17 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 1 ≤ 𝑁)))
286, 25, 27mpbir2and 710 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ (0...𝑁))
29 fznn0sub2 13363 . . . . . . . . 9 (1 ∈ (0...𝑁) → (𝑁 − 1) ∈ (0...𝑁))
3028, 29syl 17 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ (0...𝑁))
3110oveq2i 7286 . . . . . . . 8 (0...𝑁) = (0...(♯‘𝐹))
3230, 31eleqtrdi 2849 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ (0...(♯‘𝐹)))
33 pfxlen 14396 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ (𝑁 − 1) ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix (𝑁 − 1))) = (𝑁 − 1))
342, 32, 33syl2anc 584 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (♯‘(𝐹 prefix (𝑁 − 1))) = (𝑁 − 1))
35 uz2m1nn 12663 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
3621, 35syl 17 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ ℕ)
3734, 36eqeltrd 2839 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (♯‘(𝐹 prefix (𝑁 − 1))) ∈ ℕ)
38 nnne0 12007 . . . . . 6 ((♯‘(𝐹 prefix (𝑁 − 1))) ∈ ℕ → (♯‘(𝐹 prefix (𝑁 − 1))) ≠ 0)
39 fveq2 6774 . . . . . . . 8 ((𝐹 prefix (𝑁 − 1)) = ∅ → (♯‘(𝐹 prefix (𝑁 − 1))) = (♯‘∅))
40 hash0 14082 . . . . . . . 8 (♯‘∅) = 0
4139, 40eqtrdi 2794 . . . . . . 7 ((𝐹 prefix (𝑁 − 1)) = ∅ → (♯‘(𝐹 prefix (𝑁 − 1))) = 0)
4241necon3i 2976 . . . . . 6 ((♯‘(𝐹 prefix (𝑁 − 1))) ≠ 0 → (𝐹 prefix (𝑁 − 1)) ≠ ∅)
4338, 42syl 17 . . . . 5 ((♯‘(𝐹 prefix (𝑁 − 1))) ∈ ℕ → (𝐹 prefix (𝑁 − 1)) ≠ ∅)
4437, 43syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) ≠ ∅)
45 eldifsn 4720 . . . 4 ((𝐹 prefix (𝑁 − 1)) ∈ (Word ℝ ∖ {∅}) ↔ ((𝐹 prefix (𝑁 − 1)) ∈ Word ℝ ∧ (𝐹 prefix (𝑁 − 1)) ≠ ∅))
464, 44, 45sylanbrc 583 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) ∈ (Word ℝ ∖ {∅}))
47 simpr 485 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) = 0)
48 0re 10977 . . . 4 0 ∈ ℝ
4947, 48eqeltrdi 2847 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) ∈ ℝ)
5017, 18, 19, 20signstfvn 32548 . . 3 (((𝐹 prefix (𝑁 − 1)) ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ∈ ℝ) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 prefix (𝑁 − 1)))) = (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))))
5146, 49, 50syl2anc 584 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 prefix (𝑁 − 1)))) = (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))))
5210oveq1i 7285 . . . . . . . 8 (𝑁 − 1) = ((♯‘𝐹) − 1)
5352oveq2i 7286 . . . . . . 7 (𝐹 prefix (𝑁 − 1)) = (𝐹 prefix ((♯‘𝐹) − 1))
5453a1i 11 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) = (𝐹 prefix ((♯‘𝐹) − 1)))
55 lsw 14267 . . . . . . . . . 10 (𝐹 ∈ (Word ℝ ∖ {∅}) → (lastS‘𝐹) = (𝐹‘((♯‘𝐹) − 1)))
5655ad2antrr 723 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (lastS‘𝐹) = (𝐹‘((♯‘𝐹) − 1)))
5710eqcomi 2747 . . . . . . . . . . 11 (♯‘𝐹) = 𝑁
5857oveq1i 7285 . . . . . . . . . 10 ((♯‘𝐹) − 1) = (𝑁 − 1)
5958fveq2i 6777 . . . . . . . . 9 (𝐹‘((♯‘𝐹) − 1)) = (𝐹‘(𝑁 − 1))
6056, 59eqtrdi 2794 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (lastS‘𝐹) = (𝐹‘(𝑁 − 1)))
6160s1eqd 14306 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ⟨“(lastS‘𝐹)”⟩ = ⟨“(𝐹‘(𝑁 − 1))”⟩)
6261eqcomd 2744 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ⟨“(𝐹‘(𝑁 − 1))”⟩ = ⟨“(lastS‘𝐹)”⟩)
6354, 62oveq12d 7293 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩) = ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩))
64 eldifsn 4720 . . . . . . 7 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
651, 64sylib 217 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
66 pfxlswccat 14426 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩) = 𝐹)
6765, 66syl 17 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩) = 𝐹)
6863, 67eqtrd 2778 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩) = 𝐹)
6968fveq2d 6778 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩)) = (𝑇𝐹))
7069, 34fveq12d 6781 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 prefix (𝑁 − 1)))) = ((𝑇𝐹)‘(𝑁 − 1)))
7113nn0cnd 12295 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℂ)
72 1cnd 10970 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℂ)
7371, 72, 72subsub4d 11363 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
74 1p1e2 12098 . . . . . . . . . 10 (1 + 1) = 2
7574oveq2i 7286 . . . . . . . . 9 (𝑁 − (1 + 1)) = (𝑁 − 2)
7673, 75eqtrdi 2794 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) = (𝑁 − 2))
77 fzo0end 13479 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ (0..^(𝑁 − 1)))
7836, 77syl 17 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) ∈ (0..^(𝑁 − 1)))
7976, 78eqeltrrd 2840 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
8034oveq2d 7291 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (0..^(♯‘(𝐹 prefix (𝑁 − 1)))) = (0..^(𝑁 − 1)))
8179, 80eleqtrrd 2842 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(♯‘(𝐹 prefix (𝑁 − 1)))))
8217, 18, 19, 20signstfvp 32550 . . . . . 6 (((𝐹 prefix (𝑁 − 1)) ∈ Word ℝ ∧ (𝐹‘(𝑁 − 1)) ∈ ℝ ∧ (𝑁 − 2) ∈ (0..^(♯‘(𝐹 prefix (𝑁 − 1))))) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)) = ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘(𝑁 − 2)))
834, 49, 81, 82syl3anc 1370 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)) = ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘(𝑁 − 2)))
8468eqcomd 2744 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 = ((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))
8584fveq2d 6778 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑇𝐹) = (𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩)))
8685fveq1d 6776 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 2)) = ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)))
8734oveq1d 7290 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((♯‘(𝐹 prefix (𝑁 − 1))) − 1) = ((𝑁 − 1) − 1))
8887, 73eqtrd 2778 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((♯‘(𝐹 prefix (𝑁 − 1))) − 1) = (𝑁 − (1 + 1)))
8988, 75eqtrdi 2794 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((♯‘(𝐹 prefix (𝑁 − 1))) − 1) = (𝑁 − 2))
9089fveq2d 6778 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) = ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘(𝑁 − 2)))
9183, 86, 903eqtr4rd 2789 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
92 fveq2 6774 . . . . . 6 ((𝐹‘(𝑁 − 1)) = 0 → (sgn‘(𝐹‘(𝑁 − 1))) = (sgn‘0))
93 sgn0 14800 . . . . . 6 (sgn‘0) = 0
9492, 93eqtrdi 2794 . . . . 5 ((𝐹‘(𝑁 − 1)) = 0 → (sgn‘(𝐹‘(𝑁 − 1))) = 0)
9594adantl 482 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (sgn‘(𝐹‘(𝑁 − 1))) = 0)
9691, 95oveq12d 7293 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))) = (((𝑇𝐹)‘(𝑁 − 2)) 0))
97 uznn0sub 12617 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
9821, 97syl 17 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ ℕ0)
99 eluz2nn 12624 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
10021, 99syl 17 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ)
101 2rp 12735 . . . . . . . . 9 2 ∈ ℝ+
102101a1i 11 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ∈ ℝ+)
10314, 102ltsubrpd 12804 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) < 𝑁)
104 elfzo0 13428 . . . . . . 7 ((𝑁 − 2) ∈ (0..^𝑁) ↔ ((𝑁 − 2) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑁 − 2) < 𝑁))
10598, 100, 103, 104syl3anbrc 1342 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^𝑁))
10610oveq2i 7286 . . . . . 6 (0..^𝑁) = (0..^(♯‘𝐹))
107105, 106eleqtrdi 2849 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(♯‘𝐹)))
10817, 18, 19, 20signstcl 32544 . . . . 5 ((𝐹 ∈ Word ℝ ∧ (𝑁 − 2) ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1})
1092, 107, 108syl2anc 584 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1})
11017, 18signswrid 32537 . . . 4 (((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1} → (((𝑇𝐹)‘(𝑁 − 2)) 0) = ((𝑇𝐹)‘(𝑁 − 2)))
111109, 110syl 17 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇𝐹)‘(𝑁 − 2)) 0) = ((𝑇𝐹)‘(𝑁 − 2)))
11296, 111eqtrd 2778 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))) = ((𝑇𝐹)‘(𝑁 − 2)))
11351, 70, 1123eqtr3d 2786 1 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cdif 3884  c0 4256  ifcif 4459  {csn 4561  {cpr 4563  {ctp 4565  cop 4567   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cmpo 7277  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  -cneg 11206  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  +crp 12730  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217  lastSclsw 14265   ++ cconcat 14273  ⟨“cs1 14300   prefix cpfx 14383  sgncsgn 14797  Σcsu 15397  ndxcnx 16894  Basecbs 16912  +gcplusg 16962   Σg cgsu 17151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-sgn 14798  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator