Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfveq0 Structured version   Visualization version   GIF version

Theorem signstfveq0 31957
Description: In case the last letter is zero, the zero skipping sign is the same as the previous letter. (Contributed by Thierry Arnoux, 11-Oct-2018.) (Proof shortened by AV, 4-Nov-2022.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signstfveq0.1 𝑁 = (♯‘𝐹)
Assertion
Ref Expression
signstfveq0 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝐹,𝑎,𝑏,𝑓,𝑖,𝑛   𝑁,𝑎   𝑓,𝑏,𝑖,𝑛,𝑁   𝑇,𝑎,𝑏
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛)   𝐹(𝑗)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfveq0
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ (Word ℝ ∖ {∅}))
21eldifad 3893 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ Word ℝ)
3 pfxcl 14030 . . . . 5 (𝐹 ∈ Word ℝ → (𝐹 prefix (𝑁 − 1)) ∈ Word ℝ)
42, 3syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) ∈ Word ℝ)
5 1nn0 11901 . . . . . . . . . . 11 1 ∈ ℕ0
65a1i 11 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℕ0)
76nn0red 11944 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℝ)
8 2re 11699 . . . . . . . . . . . 12 2 ∈ ℝ
98a1i 11 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ∈ ℝ)
10 signstfveq0.1 . . . . . . . . . . . . 13 𝑁 = (♯‘𝐹)
11 lencl 13876 . . . . . . . . . . . . . 14 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
122, 11syl 17 . . . . . . . . . . . . 13 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (♯‘𝐹) ∈ ℕ0)
1310, 12eqeltrid 2894 . . . . . . . . . . . 12 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ0)
1413nn0red 11944 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℝ)
15 1le2 11834 . . . . . . . . . . . 12 1 ≤ 2
1615a1i 11 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ≤ 2)
17 signsv.p . . . . . . . . . . . . . 14 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
18 signsv.w . . . . . . . . . . . . . 14 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
19 signsv.t . . . . . . . . . . . . . 14 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
20 signsv.v . . . . . . . . . . . . . 14 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
2117, 18, 19, 20, 10signstfveq0a 31956 . . . . . . . . . . . . 13 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ (ℤ‘2))
22 eluz2 12237 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
2321, 22sylib 221 . . . . . . . . . . . 12 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
2423simp3d 1141 . . . . . . . . . . 11 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ≤ 𝑁)
257, 9, 14, 16, 24letrd 10786 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ≤ 𝑁)
26 fznn0 12994 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 1 ≤ 𝑁)))
2713, 26syl 17 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 1 ≤ 𝑁)))
286, 25, 27mpbir2and 712 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ (0...𝑁))
29 fznn0sub2 13009 . . . . . . . . 9 (1 ∈ (0...𝑁) → (𝑁 − 1) ∈ (0...𝑁))
3028, 29syl 17 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ (0...𝑁))
3110oveq2i 7146 . . . . . . . 8 (0...𝑁) = (0...(♯‘𝐹))
3230, 31eleqtrdi 2900 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ (0...(♯‘𝐹)))
33 pfxlen 14036 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ (𝑁 − 1) ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix (𝑁 − 1))) = (𝑁 − 1))
342, 32, 33syl2anc 587 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (♯‘(𝐹 prefix (𝑁 − 1))) = (𝑁 − 1))
35 uz2m1nn 12311 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
3621, 35syl 17 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 1) ∈ ℕ)
3734, 36eqeltrd 2890 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (♯‘(𝐹 prefix (𝑁 − 1))) ∈ ℕ)
38 nnne0 11659 . . . . . 6 ((♯‘(𝐹 prefix (𝑁 − 1))) ∈ ℕ → (♯‘(𝐹 prefix (𝑁 − 1))) ≠ 0)
39 fveq2 6645 . . . . . . . 8 ((𝐹 prefix (𝑁 − 1)) = ∅ → (♯‘(𝐹 prefix (𝑁 − 1))) = (♯‘∅))
40 hash0 13724 . . . . . . . 8 (♯‘∅) = 0
4139, 40eqtrdi 2849 . . . . . . 7 ((𝐹 prefix (𝑁 − 1)) = ∅ → (♯‘(𝐹 prefix (𝑁 − 1))) = 0)
4241necon3i 3019 . . . . . 6 ((♯‘(𝐹 prefix (𝑁 − 1))) ≠ 0 → (𝐹 prefix (𝑁 − 1)) ≠ ∅)
4338, 42syl 17 . . . . 5 ((♯‘(𝐹 prefix (𝑁 − 1))) ∈ ℕ → (𝐹 prefix (𝑁 − 1)) ≠ ∅)
4437, 43syl 17 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) ≠ ∅)
45 eldifsn 4680 . . . 4 ((𝐹 prefix (𝑁 − 1)) ∈ (Word ℝ ∖ {∅}) ↔ ((𝐹 prefix (𝑁 − 1)) ∈ Word ℝ ∧ (𝐹 prefix (𝑁 − 1)) ≠ ∅))
464, 44, 45sylanbrc 586 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) ∈ (Word ℝ ∖ {∅}))
47 simpr 488 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) = 0)
48 0re 10632 . . . 4 0 ∈ ℝ
4947, 48eqeltrdi 2898 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) ∈ ℝ)
5017, 18, 19, 20signstfvn 31949 . . 3 (((𝐹 prefix (𝑁 − 1)) ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘(𝑁 − 1)) ∈ ℝ) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 prefix (𝑁 − 1)))) = (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))))
5146, 49, 50syl2anc 587 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 prefix (𝑁 − 1)))) = (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))))
5210oveq1i 7145 . . . . . . . 8 (𝑁 − 1) = ((♯‘𝐹) − 1)
5352oveq2i 7146 . . . . . . 7 (𝐹 prefix (𝑁 − 1)) = (𝐹 prefix ((♯‘𝐹) − 1))
5453a1i 11 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 prefix (𝑁 − 1)) = (𝐹 prefix ((♯‘𝐹) − 1)))
55 lsw 13907 . . . . . . . . . 10 (𝐹 ∈ (Word ℝ ∖ {∅}) → (lastS‘𝐹) = (𝐹‘((♯‘𝐹) − 1)))
5655ad2antrr 725 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (lastS‘𝐹) = (𝐹‘((♯‘𝐹) − 1)))
5710eqcomi 2807 . . . . . . . . . . 11 (♯‘𝐹) = 𝑁
5857oveq1i 7145 . . . . . . . . . 10 ((♯‘𝐹) − 1) = (𝑁 − 1)
5958fveq2i 6648 . . . . . . . . 9 (𝐹‘((♯‘𝐹) − 1)) = (𝐹‘(𝑁 − 1))
6056, 59eqtrdi 2849 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (lastS‘𝐹) = (𝐹‘(𝑁 − 1)))
6160s1eqd 13946 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ⟨“(lastS‘𝐹)”⟩ = ⟨“(𝐹‘(𝑁 − 1))”⟩)
6261eqcomd 2804 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ⟨“(𝐹‘(𝑁 − 1))”⟩ = ⟨“(lastS‘𝐹)”⟩)
6354, 62oveq12d 7153 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩) = ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩))
64 eldifsn 4680 . . . . . . 7 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
651, 64sylib 221 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
66 pfxlswccat 14066 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩) = 𝐹)
6765, 66syl 17 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 prefix ((♯‘𝐹) − 1)) ++ ⟨“(lastS‘𝐹)”⟩) = 𝐹)
6863, 67eqtrd 2833 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩) = 𝐹)
6968fveq2d 6649 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩)) = (𝑇𝐹))
7069, 34fveq12d 6652 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(♯‘(𝐹 prefix (𝑁 − 1)))) = ((𝑇𝐹)‘(𝑁 − 1)))
7113nn0cnd 11945 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℂ)
72 1cnd 10625 . . . . . . . . . 10 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 1 ∈ ℂ)
7371, 72, 72subsub4d 11017 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
74 1p1e2 11750 . . . . . . . . . 10 (1 + 1) = 2
7574oveq2i 7146 . . . . . . . . 9 (𝑁 − (1 + 1)) = (𝑁 − 2)
7673, 75eqtrdi 2849 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) = (𝑁 − 2))
77 fzo0end 13124 . . . . . . . . 9 ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ (0..^(𝑁 − 1)))
7836, 77syl 17 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑁 − 1) − 1) ∈ (0..^(𝑁 − 1)))
7976, 78eqeltrrd 2891 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
8034oveq2d 7151 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (0..^(♯‘(𝐹 prefix (𝑁 − 1)))) = (0..^(𝑁 − 1)))
8179, 80eleqtrrd 2893 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(♯‘(𝐹 prefix (𝑁 − 1)))))
8217, 18, 19, 20signstfvp 31951 . . . . . 6 (((𝐹 prefix (𝑁 − 1)) ∈ Word ℝ ∧ (𝐹‘(𝑁 − 1)) ∈ ℝ ∧ (𝑁 − 2) ∈ (0..^(♯‘(𝐹 prefix (𝑁 − 1))))) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)) = ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘(𝑁 − 2)))
834, 49, 81, 82syl3anc 1368 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)) = ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘(𝑁 − 2)))
8468eqcomd 2804 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 = ((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))
8584fveq2d 6649 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑇𝐹) = (𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩)))
8685fveq1d 6647 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 2)) = ((𝑇‘((𝐹 prefix (𝑁 − 1)) ++ ⟨“(𝐹‘(𝑁 − 1))”⟩))‘(𝑁 − 2)))
8734oveq1d 7150 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((♯‘(𝐹 prefix (𝑁 − 1))) − 1) = ((𝑁 − 1) − 1))
8887, 73eqtrd 2833 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((♯‘(𝐹 prefix (𝑁 − 1))) − 1) = (𝑁 − (1 + 1)))
8988, 75eqtrdi 2849 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((♯‘(𝐹 prefix (𝑁 − 1))) − 1) = (𝑁 − 2))
9089fveq2d 6649 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) = ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘(𝑁 − 2)))
9183, 86, 903eqtr4rd 2844 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
92 fveq2 6645 . . . . . 6 ((𝐹‘(𝑁 − 1)) = 0 → (sgn‘(𝐹‘(𝑁 − 1))) = (sgn‘0))
93 sgn0 14440 . . . . . 6 (sgn‘0) = 0
9492, 93eqtrdi 2849 . . . . 5 ((𝐹‘(𝑁 − 1)) = 0 → (sgn‘(𝐹‘(𝑁 − 1))) = 0)
9594adantl 485 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (sgn‘(𝐹‘(𝑁 − 1))) = 0)
9691, 95oveq12d 7153 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))) = (((𝑇𝐹)‘(𝑁 − 2)) 0))
97 uznn0sub 12265 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
9821, 97syl 17 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ ℕ0)
99 eluz2nn 12272 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
10021, 99syl 17 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ)
101 2rp 12382 . . . . . . . . 9 2 ∈ ℝ+
102101a1i 11 . . . . . . . 8 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 2 ∈ ℝ+)
10314, 102ltsubrpd 12451 . . . . . . 7 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) < 𝑁)
104 elfzo0 13073 . . . . . . 7 ((𝑁 − 2) ∈ (0..^𝑁) ↔ ((𝑁 − 2) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑁 − 2) < 𝑁))
10598, 100, 103, 104syl3anbrc 1340 . . . . . 6 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^𝑁))
10610oveq2i 7146 . . . . . 6 (0..^𝑁) = (0..^(♯‘𝐹))
107105, 106eleqtrdi 2900 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝑁 − 2) ∈ (0..^(♯‘𝐹)))
10817, 18, 19, 20signstcl 31945 . . . . 5 ((𝐹 ∈ Word ℝ ∧ (𝑁 − 2) ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1})
1092, 107, 108syl2anc 587 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1})
11017, 18signswrid 31938 . . . 4 (((𝑇𝐹)‘(𝑁 − 2)) ∈ {-1, 0, 1} → (((𝑇𝐹)‘(𝑁 − 2)) 0) = ((𝑇𝐹)‘(𝑁 − 2)))
111109, 110syl 17 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇𝐹)‘(𝑁 − 2)) 0) = ((𝑇𝐹)‘(𝑁 − 2)))
11296, 111eqtrd 2833 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (((𝑇‘(𝐹 prefix (𝑁 − 1)))‘((♯‘(𝐹 prefix (𝑁 − 1))) − 1)) (sgn‘(𝐹‘(𝑁 − 1)))) = ((𝑇𝐹)‘(𝑁 − 2)))
11351, 70, 1123eqtr3d 2841 1 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → ((𝑇𝐹)‘(𝑁 − 1)) = ((𝑇𝐹)‘(𝑁 − 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  cdif 3878  c0 4243  ifcif 4425  {csn 4525  {cpr 4527  {ctp 4529  cop 4531   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cmpo 7137  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  -cneg 10860  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857  lastSclsw 13905   ++ cconcat 13913  ⟨“cs1 13940   prefix cpfx 14023  sgncsgn 14437  Σcsu 15034  ndxcnx 16472  Basecbs 16475  +gcplusg 16557   Σg cgsu 16706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-sgn 14438  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator