![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vrgpval | Structured version Visualization version GIF version |
Description: The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
Ref | Expression |
---|---|
vrgpval | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vrgpfval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
2 | vrgpfval.u | . . . 4 ⊢ 𝑈 = (varFGrp‘𝐼) | |
3 | 1, 2 | vrgpfval 19675 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ∼ )) |
4 | 3 | fveq1d 6893 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑈‘𝐴) = ((𝑗 ∈ 𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ∼ )‘𝐴)) |
5 | opeq1 4873 | . . . . 5 ⊢ (𝑗 = 𝐴 → ⟨𝑗, ∅⟩ = ⟨𝐴, ∅⟩) | |
6 | 5 | s1eqd 14555 | . . . 4 ⊢ (𝑗 = 𝐴 → ⟨“⟨𝑗, ∅⟩”⟩ = ⟨“⟨𝐴, ∅⟩”⟩) |
7 | 6 | eceq1d 8744 | . . 3 ⊢ (𝑗 = 𝐴 → [⟨“⟨𝑗, ∅⟩”⟩] ∼ = [⟨“⟨𝐴, ∅⟩”⟩] ∼ ) |
8 | eqid 2732 | . . 3 ⊢ (𝑗 ∈ 𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ∼ ) = (𝑗 ∈ 𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ∼ ) | |
9 | 1 | fvexi 6905 | . . . 4 ⊢ ∼ ∈ V |
10 | ecexg 8709 | . . . 4 ⊢ ( ∼ ∈ V → [⟨“⟨𝐴, ∅⟩”⟩] ∼ ∈ V) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ [⟨“⟨𝐴, ∅⟩”⟩] ∼ ∈ V |
12 | 7, 8, 11 | fvmpt 6998 | . 2 ⊢ (𝐴 ∈ 𝐼 → ((𝑗 ∈ 𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ∼ )‘𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] ∼ ) |
13 | 4, 12 | sylan9eq 2792 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∅c0 4322 ⟨cop 4634 ↦ cmpt 5231 ‘cfv 6543 [cec 8703 ⟨“cs1 14549 ~FG cefg 19615 varFGrpcvrgp 19617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ec 8707 df-s1 14550 df-vrgp 19620 |
This theorem is referenced by: vrgpinv 19678 frgpup2 19685 frgpup3lem 19686 frgpnabllem1 19782 |
Copyright terms: Public domain | W3C validator |