![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vrgpval | Structured version Visualization version GIF version |
Description: The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
Ref | Expression |
---|---|
vrgpval | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vrgpfval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
2 | vrgpfval.u | . . . 4 ⊢ 𝑈 = (varFGrp‘𝐼) | |
3 | 1, 2 | vrgpfval 19686 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
4 | 3 | fveq1d 6887 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑈‘𝐴) = ((𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )‘𝐴)) |
5 | opeq1 4868 | . . . . 5 ⊢ (𝑗 = 𝐴 → 〈𝑗, ∅〉 = 〈𝐴, ∅〉) | |
6 | 5 | s1eqd 14557 | . . . 4 ⊢ (𝑗 = 𝐴 → 〈“〈𝑗, ∅〉”〉 = 〈“〈𝐴, ∅〉”〉) |
7 | 6 | eceq1d 8744 | . . 3 ⊢ (𝑗 = 𝐴 → [〈“〈𝑗, ∅〉”〉] ∼ = [〈“〈𝐴, ∅〉”〉] ∼ ) |
8 | eqid 2726 | . . 3 ⊢ (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ ) = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ ) | |
9 | 1 | fvexi 6899 | . . . 4 ⊢ ∼ ∈ V |
10 | ecexg 8709 | . . . 4 ⊢ ( ∼ ∈ V → [〈“〈𝐴, ∅〉”〉] ∼ ∈ V) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ [〈“〈𝐴, ∅〉”〉] ∼ ∈ V |
12 | 7, 8, 11 | fvmpt 6992 | . 2 ⊢ (𝐴 ∈ 𝐼 → ((𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
13 | 4, 12 | sylan9eq 2786 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∅c0 4317 〈cop 4629 ↦ cmpt 5224 ‘cfv 6537 [cec 8703 〈“cs1 14551 ~FG cefg 19626 varFGrpcvrgp 19628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ec 8707 df-s1 14552 df-vrgp 19631 |
This theorem is referenced by: vrgpinv 19689 frgpup2 19696 frgpup3lem 19697 frgpnabllem1 19793 |
Copyright terms: Public domain | W3C validator |