MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrgpval Structured version   Visualization version   GIF version

Theorem vrgpval 19809
Description: The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
vrgpfval.r = ( ~FG𝐼)
vrgpfval.u 𝑈 = (varFGrp𝐼)
Assertion
Ref Expression
vrgpval ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )

Proof of Theorem vrgpval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 vrgpfval.r . . . 4 = ( ~FG𝐼)
2 vrgpfval.u . . . 4 𝑈 = (varFGrp𝐼)
31, 2vrgpfval 19808 . . 3 (𝐼𝑉𝑈 = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
43fveq1d 6922 . 2 (𝐼𝑉 → (𝑈𝐴) = ((𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] )‘𝐴))
5 opeq1 4897 . . . . 5 (𝑗 = 𝐴 → ⟨𝑗, ∅⟩ = ⟨𝐴, ∅⟩)
65s1eqd 14649 . . . 4 (𝑗 = 𝐴 → ⟨“⟨𝑗, ∅⟩”⟩ = ⟨“⟨𝐴, ∅⟩”⟩)
76eceq1d 8803 . . 3 (𝑗 = 𝐴 → [⟨“⟨𝑗, ∅⟩”⟩] = [⟨“⟨𝐴, ∅⟩”⟩] )
8 eqid 2740 . . 3 (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ) = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] )
91fvexi 6934 . . . 4 ∈ V
10 ecexg 8767 . . . 4 ( ∈ V → [⟨“⟨𝐴, ∅⟩”⟩] ∈ V)
119, 10ax-mp 5 . . 3 [⟨“⟨𝐴, ∅⟩”⟩] ∈ V
127, 8, 11fvmpt 7029 . 2 (𝐴𝐼 → ((𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] )‘𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
134, 12sylan9eq 2800 1 ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cop 4654  cmpt 5249  cfv 6573  [cec 8761  ⟨“cs1 14643   ~FG cefg 19748  varFGrpcvrgp 19750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ec 8765  df-s1 14644  df-vrgp 19753
This theorem is referenced by:  vrgpinv  19811  frgpup2  19818  frgpup3lem  19819  frgpnabllem1  19915
  Copyright terms: Public domain W3C validator