MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrgpval Structured version   Visualization version   GIF version

Theorem vrgpval 19635
Description: The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
vrgpfval.r = ( ~FG𝐼)
vrgpfval.u 𝑈 = (varFGrp𝐼)
Assertion
Ref Expression
vrgpval ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )

Proof of Theorem vrgpval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 vrgpfval.r . . . 4 = ( ~FG𝐼)
2 vrgpfval.u . . . 4 𝑈 = (varFGrp𝐼)
31, 2vrgpfval 19634 . . 3 (𝐼𝑉𝑈 = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
43fveq1d 6894 . 2 (𝐼𝑉 → (𝑈𝐴) = ((𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] )‘𝐴))
5 opeq1 4874 . . . . 5 (𝑗 = 𝐴 → ⟨𝑗, ∅⟩ = ⟨𝐴, ∅⟩)
65s1eqd 14551 . . . 4 (𝑗 = 𝐴 → ⟨“⟨𝑗, ∅⟩”⟩ = ⟨“⟨𝐴, ∅⟩”⟩)
76eceq1d 8742 . . 3 (𝑗 = 𝐴 → [⟨“⟨𝑗, ∅⟩”⟩] = [⟨“⟨𝐴, ∅⟩”⟩] )
8 eqid 2733 . . 3 (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ) = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] )
91fvexi 6906 . . . 4 ∈ V
10 ecexg 8707 . . . 4 ( ∈ V → [⟨“⟨𝐴, ∅⟩”⟩] ∈ V)
119, 10ax-mp 5 . . 3 [⟨“⟨𝐴, ∅⟩”⟩] ∈ V
127, 8, 11fvmpt 6999 . 2 (𝐴𝐼 → ((𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] )‘𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
134, 12sylan9eq 2793 1 ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  c0 4323  cop 4635  cmpt 5232  cfv 6544  [cec 8701  ⟨“cs1 14545   ~FG cefg 19574  varFGrpcvrgp 19576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ec 8705  df-s1 14546  df-vrgp 19579
This theorem is referenced by:  vrgpinv  19637  frgpup2  19644  frgpup3lem  19645  frgpnabllem1  19741
  Copyright terms: Public domain W3C validator