| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vrgpval | Structured version Visualization version GIF version | ||
| Description: The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
| Ref | Expression |
|---|---|
| vrgpval | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vrgpfval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 2 | vrgpfval.u | . . . 4 ⊢ 𝑈 = (varFGrp‘𝐼) | |
| 3 | 1, 2 | vrgpfval 19703 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
| 4 | 3 | fveq1d 6863 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑈‘𝐴) = ((𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )‘𝐴)) |
| 5 | opeq1 4840 | . . . . 5 ⊢ (𝑗 = 𝐴 → 〈𝑗, ∅〉 = 〈𝐴, ∅〉) | |
| 6 | 5 | s1eqd 14573 | . . . 4 ⊢ (𝑗 = 𝐴 → 〈“〈𝑗, ∅〉”〉 = 〈“〈𝐴, ∅〉”〉) |
| 7 | 6 | eceq1d 8714 | . . 3 ⊢ (𝑗 = 𝐴 → [〈“〈𝑗, ∅〉”〉] ∼ = [〈“〈𝐴, ∅〉”〉] ∼ ) |
| 8 | eqid 2730 | . . 3 ⊢ (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ ) = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ ) | |
| 9 | 1 | fvexi 6875 | . . . 4 ⊢ ∼ ∈ V |
| 10 | ecexg 8678 | . . . 4 ⊢ ( ∼ ∈ V → [〈“〈𝐴, ∅〉”〉] ∼ ∈ V) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ [〈“〈𝐴, ∅〉”〉] ∼ ∈ V |
| 12 | 7, 8, 11 | fvmpt 6971 | . 2 ⊢ (𝐴 ∈ 𝐼 → ((𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
| 13 | 4, 12 | sylan9eq 2785 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 〈cop 4598 ↦ cmpt 5191 ‘cfv 6514 [cec 8672 〈“cs1 14567 ~FG cefg 19643 varFGrpcvrgp 19645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ec 8676 df-s1 14568 df-vrgp 19648 |
| This theorem is referenced by: vrgpinv 19706 frgpup2 19713 frgpup3lem 19714 frgpnabllem1 19810 |
| Copyright terms: Public domain | W3C validator |