Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vrgpval | Structured version Visualization version GIF version |
Description: The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
vrgpfval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
vrgpfval.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
Ref | Expression |
---|---|
vrgpval | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vrgpfval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
2 | vrgpfval.u | . . . 4 ⊢ 𝑈 = (varFGrp‘𝐼) | |
3 | 1, 2 | vrgpfval 19417 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝑈 = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )) |
4 | 3 | fveq1d 6806 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑈‘𝐴) = ((𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )‘𝐴)) |
5 | opeq1 4809 | . . . . 5 ⊢ (𝑗 = 𝐴 → 〈𝑗, ∅〉 = 〈𝐴, ∅〉) | |
6 | 5 | s1eqd 14351 | . . . 4 ⊢ (𝑗 = 𝐴 → 〈“〈𝑗, ∅〉”〉 = 〈“〈𝐴, ∅〉”〉) |
7 | 6 | eceq1d 8568 | . . 3 ⊢ (𝑗 = 𝐴 → [〈“〈𝑗, ∅〉”〉] ∼ = [〈“〈𝐴, ∅〉”〉] ∼ ) |
8 | eqid 2736 | . . 3 ⊢ (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ ) = (𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ ) | |
9 | 1 | fvexi 6818 | . . . 4 ⊢ ∼ ∈ V |
10 | ecexg 8533 | . . . 4 ⊢ ( ∼ ∈ V → [〈“〈𝐴, ∅〉”〉] ∼ ∈ V) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ [〈“〈𝐴, ∅〉”〉] ∼ ∈ V |
12 | 7, 8, 11 | fvmpt 6907 | . 2 ⊢ (𝐴 ∈ 𝐼 → ((𝑗 ∈ 𝐼 ↦ [〈“〈𝑗, ∅〉”〉] ∼ )‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
13 | 4, 12 | sylan9eq 2796 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∅c0 4262 〈cop 4571 ↦ cmpt 5164 ‘cfv 6458 [cec 8527 〈“cs1 14345 ~FG cefg 19357 varFGrpcvrgp 19359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ec 8531 df-s1 14346 df-vrgp 19362 |
This theorem is referenced by: vrgpinv 19420 frgpup2 19427 frgpup3lem 19428 frgpnabllem1 19519 |
Copyright terms: Public domain | W3C validator |