MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vrgpval Structured version   Visualization version   GIF version

Theorem vrgpval 19673
Description: The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
vrgpfval.r = ( ~FG𝐼)
vrgpfval.u 𝑈 = (varFGrp𝐼)
Assertion
Ref Expression
vrgpval ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )

Proof of Theorem vrgpval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 vrgpfval.r . . . 4 = ( ~FG𝐼)
2 vrgpfval.u . . . 4 𝑈 = (varFGrp𝐼)
31, 2vrgpfval 19672 . . 3 (𝐼𝑉𝑈 = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ))
43fveq1d 6842 . 2 (𝐼𝑉 → (𝑈𝐴) = ((𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] )‘𝐴))
5 opeq1 4833 . . . . 5 (𝑗 = 𝐴 → ⟨𝑗, ∅⟩ = ⟨𝐴, ∅⟩)
65s1eqd 14542 . . . 4 (𝑗 = 𝐴 → ⟨“⟨𝑗, ∅⟩”⟩ = ⟨“⟨𝐴, ∅⟩”⟩)
76eceq1d 8688 . . 3 (𝑗 = 𝐴 → [⟨“⟨𝑗, ∅⟩”⟩] = [⟨“⟨𝐴, ∅⟩”⟩] )
8 eqid 2729 . . 3 (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] ) = (𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] )
91fvexi 6854 . . . 4 ∈ V
10 ecexg 8652 . . . 4 ( ∈ V → [⟨“⟨𝐴, ∅⟩”⟩] ∈ V)
119, 10ax-mp 5 . . 3 [⟨“⟨𝐴, ∅⟩”⟩] ∈ V
127, 8, 11fvmpt 6950 . 2 (𝐴𝐼 → ((𝑗𝐼 ↦ [⟨“⟨𝑗, ∅⟩”⟩] )‘𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
134, 12sylan9eq 2784 1 ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  cop 4591  cmpt 5183  cfv 6499  [cec 8646  ⟨“cs1 14536   ~FG cefg 19612  varFGrpcvrgp 19614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ec 8650  df-s1 14537  df-vrgp 19617
This theorem is referenced by:  vrgpinv  19675  frgpup2  19682  frgpup3lem  19683  frgpnabllem1  19779
  Copyright terms: Public domain W3C validator