Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxlsw2ccat Structured version   Visualization version   GIF version

Theorem pfxlsw2ccat 31224
Description: Reconstruct a word from its prefix and its last two symbols. (Contributed by Thierry Arnoux, 26-Sep-2023.)
Hypothesis
Ref Expression
pfxlsw2ccat.n 𝑁 = (♯‘𝑊)
Assertion
Ref Expression
pfxlsw2ccat ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))

Proof of Theorem pfxlsw2ccat
StepHypRef Expression
1 simpl 483 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 ∈ Word 𝑉)
2 simpr 485 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
3 pfxlsw2ccat.n . . . . . 6 𝑁 = (♯‘𝑊)
42, 3breqtrdi 5115 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 2 ≤ (♯‘𝑊))
5 wrdlenge2n0 14255 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 𝑊 ≠ ∅)
61, 4, 5syl2anc 584 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 ≠ ∅)
7 pfxlswccat 14426 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
81, 6, 7syl2anc 584 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
9 lsw 14267 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
103oveq1i 7285 . . . . . . . 8 (𝑁 − 1) = ((♯‘𝑊) − 1)
1110fveq2i 6777 . . . . . . 7 (𝑊‘(𝑁 − 1)) = (𝑊‘((♯‘𝑊) − 1))
129, 11eqtr4di 2796 . . . . . 6 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘(𝑁 − 1)))
131, 12syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (lastS‘𝑊) = (𝑊‘(𝑁 − 1)))
1413s1eqd 14306 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ⟨“(lastS‘𝑊)”⟩ = ⟨“(𝑊‘(𝑁 − 1))”⟩)
1514oveq2d 7291 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩))
168, 15eqtr3d 2780 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩))
17 pfxcl 14390 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word 𝑉)
181, 17syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word 𝑉)
19 lencl 14236 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
201, 19syl 17 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘𝑊) ∈ ℕ0)
213, 20eqeltrid 2843 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ0)
22 nn0ge2m1nn 12302 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
2321, 2, 22syl2anc 584 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
2410, 23eqeltrrid 2844 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℕ)
2520nn0red 12294 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘𝑊) ∈ ℝ)
2625lem1d 11908 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
27 pfxn0 14399 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅)
281, 24, 26, 27syl3anc 1370 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅)
29 pfxlswccat 14426 . . . . 5 (((𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word 𝑉 ∧ (𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅) → (((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ++ ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩) = (𝑊 prefix ((♯‘𝑊) − 1)))
3018, 28, 29syl2anc 584 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ++ ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩) = (𝑊 prefix ((♯‘𝑊) − 1)))
31 ige2m1fz 13346 . . . . . . . 8 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
3220, 4, 31syl2anc 584 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
33 pfxlen 14396 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix ((♯‘𝑊) − 1))) = ((♯‘𝑊) − 1))
341, 32, 33syl2anc 584 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘(𝑊 prefix ((♯‘𝑊) − 1))) = ((♯‘𝑊) − 1))
3534oveq1d 7290 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = (((♯‘𝑊) − 1) − 1))
36 0zd 12331 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ∈ ℤ)
37 nn0ge2m1nn0 12303 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0)
3821, 2, 37syl2anc 584 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0)
3910, 38eqeltrrid 2844 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℕ0)
4039nn0zd 12424 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℤ)
41 1zzd 12351 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 1 ∈ ℤ)
4240, 41zsubcld 12431 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((♯‘𝑊) − 1) − 1) ∈ ℤ)
43 2nn0 12250 . . . . . . . . . . . . . 14 2 ∈ ℕ0
4443a1i 11 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 2 ∈ ℕ0)
45 nn0sub 12283 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0))
4645biimpa 477 . . . . . . . . . . . . 13 (((2 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 2 ≤ 𝑁) → (𝑁 − 2) ∈ ℕ0)
4744, 21, 2, 46syl21anc 835 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑁 − 2) ∈ ℕ0)
4847nn0ge0d 12296 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ≤ (𝑁 − 2))
4921nn0cnd 12295 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℂ)
50 sub1m1 12225 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑁 − 1) − 1) = (𝑁 − 2))
5149, 50syl 17 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑁 − 1) − 1) = (𝑁 − 2))
5248, 51breqtrrd 5102 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ≤ ((𝑁 − 1) − 1))
5310oveq1i 7285 . . . . . . . . . 10 ((𝑁 − 1) − 1) = (((♯‘𝑊) − 1) − 1)
5452, 53breqtrdi 5115 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ≤ (((♯‘𝑊) − 1) − 1))
5524nnred 11988 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℝ)
5655lem1d 11908 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1))
5736, 40, 42, 54, 56elfzd 13247 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((♯‘𝑊) − 1) − 1) ∈ (0...((♯‘𝑊) − 1)))
5835, 57eqeltrd 2839 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) ∈ (0...((♯‘𝑊) − 1)))
59 pfxpfx 14421 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ∧ ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) ∈ (0...((♯‘𝑊) − 1))) → ((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)))
601, 32, 58, 59syl3anc 1370 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)))
6134, 10eqtr4di 2796 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑁 − 1))
6261oveq1d 7290 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = ((𝑁 − 1) − 1))
6362, 51eqtrd 2778 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = (𝑁 − 2))
6463oveq2d 7291 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix (𝑁 − 2)))
6560, 64eqtrd 2778 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix (𝑁 − 2)))
66 pfxtrcfvl 14410 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (lastS‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑊‘((♯‘𝑊) − 2)))
671, 4, 66syl2anc 584 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (lastS‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑊‘((♯‘𝑊) − 2)))
683a1i 11 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑁 = (♯‘𝑊))
6968fvoveq1d 7297 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊‘(𝑁 − 2)) = (𝑊‘((♯‘𝑊) − 2)))
7067, 69eqtr4d 2781 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (lastS‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑊‘(𝑁 − 2)))
7170s1eqd 14306 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩ = ⟨“(𝑊‘(𝑁 − 2))”⟩)
7265, 71oveq12d 7293 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ++ ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩))
7330, 72eqtr3d 2780 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘𝑊) − 1)) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩))
7473oveq1d 7290 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩) = (((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩))
75 pfxcl 14390 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (𝑁 − 2)) ∈ Word 𝑉)
761, 75syl 17 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix (𝑁 − 2)) ∈ Word 𝑉)
77 ccatw2s1ccatws2 14667 . . 3 ((𝑊 prefix (𝑁 − 2)) ∈ Word 𝑉 → (((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))
7876, 77syl 17 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))
7916, 74, 783eqtrd 2782 1 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  c0 4256   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872  cle 11010  cmin 11205  cn 11973  2c2 12028  0cn0 12233  ...cfz 13239  chash 14044  Word cword 14217  lastSclsw 14265   ++ cconcat 14273  ⟨“cs1 14300   prefix cpfx 14383  ⟨“cs2 14554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-s2 14561
This theorem is referenced by:  wrdt2ind  31225
  Copyright terms: Public domain W3C validator