Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxlsw2ccat Structured version   Visualization version   GIF version

Theorem pfxlsw2ccat 32920
Description: Reconstruct a word from its prefix and its last two symbols. (Contributed by Thierry Arnoux, 26-Sep-2023.)
Hypothesis
Ref Expression
pfxlsw2ccat.n 𝑁 = (♯‘𝑊)
Assertion
Ref Expression
pfxlsw2ccat ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))

Proof of Theorem pfxlsw2ccat
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 ∈ Word 𝑉)
2 simpr 484 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
3 pfxlsw2ccat.n . . . . . 6 𝑁 = (♯‘𝑊)
42, 3breqtrdi 5189 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 2 ≤ (♯‘𝑊))
5 wrdlenge2n0 14587 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 𝑊 ≠ ∅)
61, 4, 5syl2anc 584 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 ≠ ∅)
7 pfxlswccat 14748 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
81, 6, 7syl2anc 584 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
9 lsw 14599 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
103oveq1i 7441 . . . . . . . 8 (𝑁 − 1) = ((♯‘𝑊) − 1)
1110fveq2i 6910 . . . . . . 7 (𝑊‘(𝑁 − 1)) = (𝑊‘((♯‘𝑊) − 1))
129, 11eqtr4di 2793 . . . . . 6 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘(𝑁 − 1)))
131, 12syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (lastS‘𝑊) = (𝑊‘(𝑁 − 1)))
1413s1eqd 14636 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ⟨“(lastS‘𝑊)”⟩ = ⟨“(𝑊‘(𝑁 − 1))”⟩)
1514oveq2d 7447 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩))
168, 15eqtr3d 2777 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩))
17 pfxcl 14712 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word 𝑉)
181, 17syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word 𝑉)
19 lencl 14568 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
201, 19syl 17 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘𝑊) ∈ ℕ0)
213, 20eqeltrid 2843 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ0)
22 nn0ge2m1nn 12594 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
2321, 2, 22syl2anc 584 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
2410, 23eqeltrrid 2844 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℕ)
2520nn0red 12586 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘𝑊) ∈ ℝ)
2625lem1d 12199 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
27 pfxn0 14721 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅)
281, 24, 26, 27syl3anc 1370 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅)
29 pfxlswccat 14748 . . . . 5 (((𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word 𝑉 ∧ (𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅) → (((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ++ ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩) = (𝑊 prefix ((♯‘𝑊) − 1)))
3018, 28, 29syl2anc 584 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ++ ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩) = (𝑊 prefix ((♯‘𝑊) − 1)))
31 ige2m1fz 13654 . . . . . . . 8 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
3220, 4, 31syl2anc 584 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
33 pfxlen 14718 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix ((♯‘𝑊) − 1))) = ((♯‘𝑊) − 1))
341, 32, 33syl2anc 584 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘(𝑊 prefix ((♯‘𝑊) − 1))) = ((♯‘𝑊) − 1))
3534oveq1d 7446 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = (((♯‘𝑊) − 1) − 1))
36 0zd 12623 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ∈ ℤ)
37 nn0ge2m1nn0 12595 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0)
3821, 2, 37syl2anc 584 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0)
3910, 38eqeltrrid 2844 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℕ0)
4039nn0zd 12637 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℤ)
41 1zzd 12646 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 1 ∈ ℤ)
4240, 41zsubcld 12725 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((♯‘𝑊) − 1) − 1) ∈ ℤ)
43 2nn0 12541 . . . . . . . . . . . . . 14 2 ∈ ℕ0
4443a1i 11 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 2 ∈ ℕ0)
45 nn0sub 12574 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0))
4645biimpa 476 . . . . . . . . . . . . 13 (((2 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 2 ≤ 𝑁) → (𝑁 − 2) ∈ ℕ0)
4744, 21, 2, 46syl21anc 838 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑁 − 2) ∈ ℕ0)
4847nn0ge0d 12588 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ≤ (𝑁 − 2))
4921nn0cnd 12587 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℂ)
50 sub1m1 12516 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑁 − 1) − 1) = (𝑁 − 2))
5149, 50syl 17 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑁 − 1) − 1) = (𝑁 − 2))
5248, 51breqtrrd 5176 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ≤ ((𝑁 − 1) − 1))
5310oveq1i 7441 . . . . . . . . . 10 ((𝑁 − 1) − 1) = (((♯‘𝑊) − 1) − 1)
5452, 53breqtrdi 5189 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ≤ (((♯‘𝑊) − 1) − 1))
5524nnred 12279 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℝ)
5655lem1d 12199 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1))
5736, 40, 42, 54, 56elfzd 13552 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((♯‘𝑊) − 1) − 1) ∈ (0...((♯‘𝑊) − 1)))
5835, 57eqeltrd 2839 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) ∈ (0...((♯‘𝑊) − 1)))
59 pfxpfx 14743 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ∧ ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) ∈ (0...((♯‘𝑊) − 1))) → ((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)))
601, 32, 58, 59syl3anc 1370 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)))
6134, 10eqtr4di 2793 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑁 − 1))
6261oveq1d 7446 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = ((𝑁 − 1) − 1))
6362, 51eqtrd 2775 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = (𝑁 − 2))
6463oveq2d 7447 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix (𝑁 − 2)))
6560, 64eqtrd 2775 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix (𝑁 − 2)))
66 pfxtrcfvl 14732 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (lastS‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑊‘((♯‘𝑊) − 2)))
671, 4, 66syl2anc 584 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (lastS‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑊‘((♯‘𝑊) − 2)))
683a1i 11 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑁 = (♯‘𝑊))
6968fvoveq1d 7453 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊‘(𝑁 − 2)) = (𝑊‘((♯‘𝑊) − 2)))
7067, 69eqtr4d 2778 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (lastS‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑊‘(𝑁 − 2)))
7170s1eqd 14636 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩ = ⟨“(𝑊‘(𝑁 − 2))”⟩)
7265, 71oveq12d 7449 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ++ ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩))
7330, 72eqtr3d 2777 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘𝑊) − 1)) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩))
7473oveq1d 7446 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩) = (((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩))
75 pfxcl 14712 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (𝑁 − 2)) ∈ Word 𝑉)
761, 75syl 17 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix (𝑁 − 2)) ∈ Word 𝑉)
77 ccatw2s1ccatws2 14990 . . 3 ((𝑊 prefix (𝑁 − 2)) ∈ Word 𝑉 → (((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))
7876, 77syl 17 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))
7916, 74, 783eqtrd 2779 1 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  c0 4339   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154  cle 11294  cmin 11490  cn 12264  2c2 12319  0cn0 12524  ...cfz 13544  chash 14366  Word cword 14549  lastSclsw 14597   ++ cconcat 14605  ⟨“cs1 14630   prefix cpfx 14705  ⟨“cs2 14877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-s2 14884
This theorem is referenced by:  wrdt2ind  32923
  Copyright terms: Public domain W3C validator