Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxlsw2ccat Structured version   Visualization version   GIF version

Theorem pfxlsw2ccat 30944
Description: Reconstruct a word from its prefix and its last two symbols. (Contributed by Thierry Arnoux, 26-Sep-2023.)
Hypothesis
Ref Expression
pfxlsw2ccat.n 𝑁 = (♯‘𝑊)
Assertion
Ref Expression
pfxlsw2ccat ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))

Proof of Theorem pfxlsw2ccat
StepHypRef Expression
1 simpl 486 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 ∈ Word 𝑉)
2 simpr 488 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
3 pfxlsw2ccat.n . . . . . 6 𝑁 = (♯‘𝑊)
42, 3breqtrdi 5094 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 2 ≤ (♯‘𝑊))
5 wrdlenge2n0 14107 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 𝑊 ≠ ∅)
61, 4, 5syl2anc 587 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 ≠ ∅)
7 pfxlswccat 14278 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
81, 6, 7syl2anc 587 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
9 lsw 14119 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
103oveq1i 7223 . . . . . . . 8 (𝑁 − 1) = ((♯‘𝑊) − 1)
1110fveq2i 6720 . . . . . . 7 (𝑊‘(𝑁 − 1)) = (𝑊‘((♯‘𝑊) − 1))
129, 11eqtr4di 2796 . . . . . 6 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘(𝑁 − 1)))
131, 12syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (lastS‘𝑊) = (𝑊‘(𝑁 − 1)))
1413s1eqd 14158 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ⟨“(lastS‘𝑊)”⟩ = ⟨“(𝑊‘(𝑁 − 1))”⟩)
1514oveq2d 7229 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩))
168, 15eqtr3d 2779 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩))
17 pfxcl 14242 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word 𝑉)
181, 17syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word 𝑉)
19 lencl 14088 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
201, 19syl 17 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘𝑊) ∈ ℕ0)
213, 20eqeltrid 2842 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ0)
22 nn0ge2m1nn 12159 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
2321, 2, 22syl2anc 587 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
2410, 23eqeltrrid 2843 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℕ)
2520nn0red 12151 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘𝑊) ∈ ℝ)
2625lem1d 11765 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
27 pfxn0 14251 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅)
281, 24, 26, 27syl3anc 1373 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅)
29 pfxlswccat 14278 . . . . 5 (((𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word 𝑉 ∧ (𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅) → (((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ++ ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩) = (𝑊 prefix ((♯‘𝑊) − 1)))
3018, 28, 29syl2anc 587 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ++ ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩) = (𝑊 prefix ((♯‘𝑊) − 1)))
31 ige2m1fz 13202 . . . . . . . 8 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
3220, 4, 31syl2anc 587 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
33 pfxlen 14248 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix ((♯‘𝑊) − 1))) = ((♯‘𝑊) − 1))
341, 32, 33syl2anc 587 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘(𝑊 prefix ((♯‘𝑊) − 1))) = ((♯‘𝑊) − 1))
3534oveq1d 7228 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = (((♯‘𝑊) − 1) − 1))
36 0zd 12188 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ∈ ℤ)
37 nn0ge2m1nn0 12160 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0)
3821, 2, 37syl2anc 587 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0)
3910, 38eqeltrrid 2843 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℕ0)
4039nn0zd 12280 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℤ)
41 1zzd 12208 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 1 ∈ ℤ)
4240, 41zsubcld 12287 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((♯‘𝑊) − 1) − 1) ∈ ℤ)
43 2nn0 12107 . . . . . . . . . . . . . 14 2 ∈ ℕ0
4443a1i 11 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 2 ∈ ℕ0)
45 nn0sub 12140 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0))
4645biimpa 480 . . . . . . . . . . . . 13 (((2 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 2 ≤ 𝑁) → (𝑁 − 2) ∈ ℕ0)
4744, 21, 2, 46syl21anc 838 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑁 − 2) ∈ ℕ0)
4847nn0ge0d 12153 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ≤ (𝑁 − 2))
4921nn0cnd 12152 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℂ)
50 sub1m1 12082 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑁 − 1) − 1) = (𝑁 − 2))
5149, 50syl 17 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑁 − 1) − 1) = (𝑁 − 2))
5248, 51breqtrrd 5081 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ≤ ((𝑁 − 1) − 1))
5310oveq1i 7223 . . . . . . . . . 10 ((𝑁 − 1) − 1) = (((♯‘𝑊) − 1) − 1)
5452, 53breqtrdi 5094 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ≤ (((♯‘𝑊) − 1) − 1))
5524nnred 11845 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℝ)
5655lem1d 11765 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1))
5736, 40, 42, 54, 56elfzd 13103 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((♯‘𝑊) − 1) − 1) ∈ (0...((♯‘𝑊) − 1)))
5835, 57eqeltrd 2838 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) ∈ (0...((♯‘𝑊) − 1)))
59 pfxpfx 14273 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ∧ ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) ∈ (0...((♯‘𝑊) − 1))) → ((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)))
601, 32, 58, 59syl3anc 1373 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)))
6134, 10eqtr4di 2796 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑁 − 1))
6261oveq1d 7228 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = ((𝑁 − 1) − 1))
6362, 51eqtrd 2777 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = (𝑁 − 2))
6463oveq2d 7229 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix (𝑁 − 2)))
6560, 64eqtrd 2777 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix (𝑁 − 2)))
66 pfxtrcfvl 14262 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (lastS‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑊‘((♯‘𝑊) − 2)))
671, 4, 66syl2anc 587 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (lastS‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑊‘((♯‘𝑊) − 2)))
683a1i 11 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑁 = (♯‘𝑊))
6968fvoveq1d 7235 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊‘(𝑁 − 2)) = (𝑊‘((♯‘𝑊) − 2)))
7067, 69eqtr4d 2780 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (lastS‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑊‘(𝑁 − 2)))
7170s1eqd 14158 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩ = ⟨“(𝑊‘(𝑁 − 2))”⟩)
7265, 71oveq12d 7231 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ++ ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩))
7330, 72eqtr3d 2779 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘𝑊) − 1)) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩))
7473oveq1d 7228 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩) = (((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩))
75 pfxcl 14242 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (𝑁 − 2)) ∈ Word 𝑉)
761, 75syl 17 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix (𝑁 − 2)) ∈ Word 𝑉)
77 ccatw2s1ccatws2 14519 . . 3 ((𝑊 prefix (𝑁 − 2)) ∈ Word 𝑉 → (((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))
7876, 77syl 17 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))
7916, 74, 783eqtrd 2781 1 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  c0 4237   class class class wbr 5053  cfv 6380  (class class class)co 7213  cc 10727  0cc0 10729  1c1 10730  cle 10868  cmin 11062  cn 11830  2c2 11885  0cn0 12090  ...cfz 13095  chash 13896  Word cword 14069  lastSclsw 14117   ++ cconcat 14125  ⟨“cs1 14152   prefix cpfx 14235  ⟨“cs2 14406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-hash 13897  df-word 14070  df-lsw 14118  df-concat 14126  df-s1 14153  df-substr 14206  df-pfx 14236  df-s2 14413
This theorem is referenced by:  wrdt2ind  30945
  Copyright terms: Public domain W3C validator