Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxlsw2ccat Structured version   Visualization version   GIF version

Theorem pfxlsw2ccat 31126
Description: Reconstruct a word from its prefix and its last two symbols. (Contributed by Thierry Arnoux, 26-Sep-2023.)
Hypothesis
Ref Expression
pfxlsw2ccat.n 𝑁 = (♯‘𝑊)
Assertion
Ref Expression
pfxlsw2ccat ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))

Proof of Theorem pfxlsw2ccat
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 ∈ Word 𝑉)
2 simpr 484 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
3 pfxlsw2ccat.n . . . . . 6 𝑁 = (♯‘𝑊)
42, 3breqtrdi 5111 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 2 ≤ (♯‘𝑊))
5 wrdlenge2n0 14183 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 𝑊 ≠ ∅)
61, 4, 5syl2anc 583 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 ≠ ∅)
7 pfxlswccat 14354 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
81, 6, 7syl2anc 583 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = 𝑊)
9 lsw 14195 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
103oveq1i 7265 . . . . . . . 8 (𝑁 − 1) = ((♯‘𝑊) − 1)
1110fveq2i 6759 . . . . . . 7 (𝑊‘(𝑁 − 1)) = (𝑊‘((♯‘𝑊) − 1))
129, 11eqtr4di 2797 . . . . . 6 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘(𝑁 − 1)))
131, 12syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (lastS‘𝑊) = (𝑊‘(𝑁 − 1)))
1413s1eqd 14234 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ⟨“(lastS‘𝑊)”⟩ = ⟨“(𝑊‘(𝑁 − 1))”⟩)
1514oveq2d 7271 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(lastS‘𝑊)”⟩) = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩))
168, 15eqtr3d 2780 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩))
17 pfxcl 14318 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word 𝑉)
181, 17syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word 𝑉)
19 lencl 14164 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
201, 19syl 17 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘𝑊) ∈ ℕ0)
213, 20eqeltrid 2843 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ0)
22 nn0ge2m1nn 12232 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
2321, 2, 22syl2anc 583 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
2410, 23eqeltrrid 2844 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℕ)
2520nn0red 12224 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘𝑊) ∈ ℝ)
2625lem1d 11838 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
27 pfxn0 14327 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ ℕ ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅)
281, 24, 26, 27syl3anc 1369 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅)
29 pfxlswccat 14354 . . . . 5 (((𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word 𝑉 ∧ (𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅) → (((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ++ ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩) = (𝑊 prefix ((♯‘𝑊) − 1)))
3018, 28, 29syl2anc 583 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ++ ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩) = (𝑊 prefix ((♯‘𝑊) − 1)))
31 ige2m1fz 13275 . . . . . . . 8 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
3220, 4, 31syl2anc 583 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
33 pfxlen 14324 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix ((♯‘𝑊) − 1))) = ((♯‘𝑊) − 1))
341, 32, 33syl2anc 583 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘(𝑊 prefix ((♯‘𝑊) − 1))) = ((♯‘𝑊) − 1))
3534oveq1d 7270 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = (((♯‘𝑊) − 1) − 1))
36 0zd 12261 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ∈ ℤ)
37 nn0ge2m1nn0 12233 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0)
3821, 2, 37syl2anc 583 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0)
3910, 38eqeltrrid 2844 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℕ0)
4039nn0zd 12353 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℤ)
41 1zzd 12281 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 1 ∈ ℤ)
4240, 41zsubcld 12360 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((♯‘𝑊) − 1) − 1) ∈ ℤ)
43 2nn0 12180 . . . . . . . . . . . . . 14 2 ∈ ℕ0
4443a1i 11 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 2 ∈ ℕ0)
45 nn0sub 12213 . . . . . . . . . . . . . 14 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0))
4645biimpa 476 . . . . . . . . . . . . 13 (((2 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 2 ≤ 𝑁) → (𝑁 − 2) ∈ ℕ0)
4744, 21, 2, 46syl21anc 834 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑁 − 2) ∈ ℕ0)
4847nn0ge0d 12226 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ≤ (𝑁 − 2))
4921nn0cnd 12225 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℂ)
50 sub1m1 12155 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑁 − 1) − 1) = (𝑁 − 2))
5149, 50syl 17 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑁 − 1) − 1) = (𝑁 − 2))
5248, 51breqtrrd 5098 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ≤ ((𝑁 − 1) − 1))
5310oveq1i 7265 . . . . . . . . . 10 ((𝑁 − 1) − 1) = (((♯‘𝑊) − 1) − 1)
5452, 53breqtrdi 5111 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 0 ≤ (((♯‘𝑊) − 1) − 1))
5524nnred 11918 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘𝑊) − 1) ∈ ℝ)
5655lem1d 11838 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1))
5736, 40, 42, 54, 56elfzd 13176 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((♯‘𝑊) − 1) − 1) ∈ (0...((♯‘𝑊) − 1)))
5835, 57eqeltrd 2839 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) ∈ (0...((♯‘𝑊) − 1)))
59 pfxpfx 14349 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ∧ ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) ∈ (0...((♯‘𝑊) − 1))) → ((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)))
601, 32, 58, 59syl3anc 1369 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)))
6134, 10eqtr4di 2797 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (♯‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑁 − 1))
6261oveq1d 7270 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = ((𝑁 − 1) − 1))
6362, 51eqtrd 2778 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = (𝑁 − 2))
6463oveq2d 7271 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix (𝑁 − 2)))
6560, 64eqtrd 2778 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (𝑊 prefix (𝑁 − 2)))
66 pfxtrcfvl 14338 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (lastS‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑊‘((♯‘𝑊) − 2)))
671, 4, 66syl2anc 583 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (lastS‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑊‘((♯‘𝑊) − 2)))
683a1i 11 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑁 = (♯‘𝑊))
6968fvoveq1d 7277 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊‘(𝑁 − 2)) = (𝑊‘((♯‘𝑊) − 2)))
7067, 69eqtr4d 2781 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (lastS‘(𝑊 prefix ((♯‘𝑊) − 1))) = (𝑊‘(𝑁 − 2)))
7170s1eqd 14234 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩ = ⟨“(𝑊‘(𝑁 − 2))”⟩)
7265, 71oveq12d 7273 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((𝑊 prefix ((♯‘𝑊) − 1)) prefix ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ++ ⟨“(lastS‘(𝑊 prefix ((♯‘𝑊) − 1)))”⟩) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩))
7330, 72eqtr3d 2780 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix ((♯‘𝑊) − 1)) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩))
7473oveq1d 7270 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → ((𝑊 prefix ((♯‘𝑊) − 1)) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩) = (((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩))
75 pfxcl 14318 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (𝑁 − 2)) ∈ Word 𝑉)
761, 75syl 17 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (𝑊 prefix (𝑁 − 2)) ∈ Word 𝑉)
77 ccatw2s1ccatws2 14595 . . 3 ((𝑊 prefix (𝑁 − 2)) ∈ Word 𝑉 → (((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))
7876, 77syl 17 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → (((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))”⟩) ++ ⟨“(𝑊‘(𝑁 − 1))”⟩) = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))
7916, 74, 783eqtrd 2782 1 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ ⟨“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803  cle 10941  cmin 11135  cn 11903  2c2 11958  0cn0 12163  ...cfz 13168  chash 13972  Word cword 14145  lastSclsw 14193   ++ cconcat 14201  ⟨“cs1 14228   prefix cpfx 14311  ⟨“cs2 14482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-s2 14489
This theorem is referenced by:  wrdt2ind  31127
  Copyright terms: Public domain W3C validator