MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdlsw Structured version   Visualization version   GIF version

Theorem swrdlsw 13848
Description: Extract the last single symbol from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
swrdlsw ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑊)”⟩)

Proof of Theorem swrdlsw
StepHypRef Expression
1 hashneq0 13543 . . . . 5 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
2 lencl 13697 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
3 nn0z 11821 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
4 elnnz 11806 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)))
5 fzo0end 12947 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
64, 5sylbir 227 . . . . . . 7 (((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
76ex 405 . . . . . 6 ((♯‘𝑊) ∈ ℤ → (0 < (♯‘𝑊) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
82, 3, 73syl 18 . . . . 5 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
91, 8sylbird 252 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
109imp 398 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
11 swrds1 13847 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 1))”⟩)
1210, 11syldan 582 . 2 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 substr ⟨((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 1))”⟩)
13 nn0cn 11721 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ)
14 ax-1cn 10395 . . . . . . 7 1 ∈ ℂ
1513, 14jctir 513 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ))
16 npcan 10698 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
1716eqcomd 2784 . . . . . 6 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1))
182, 15, 173syl 18 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1))
1918adantr 473 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1))
2019opeq2d 4685 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩ = ⟨((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)⟩)
2120oveq2d 6994 . 2 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑊 substr ⟨((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)⟩))
22 lsw 13730 . . . 4 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
2322adantr 473 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
2423s1eqd 13767 . 2 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ⟨“(lastS‘𝑊)”⟩ = ⟨“(𝑊‘((♯‘𝑊) − 1))”⟩)
2512, 21, 243eqtr4d 2824 1 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑊)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wne 2967  c0 4180  cop 4448   class class class wbr 4930  cfv 6190  (class class class)co 6978  cc 10335  0cc0 10337  1c1 10338   + caddc 10340   < clt 10476  cmin 10672  cn 11441  0cn0 11710  cz 11796  ..^cfzo 12852  chash 13508  Word cword 13675  lastSclsw 13728  ⟨“cs1 13761   substr csubstr 13806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-oadd 7911  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-n0 11711  df-xnn0 11783  df-z 11797  df-uz 12062  df-fz 12712  df-fzo 12853  df-hash 13509  df-word 13676  df-lsw 13729  df-s1 13762  df-substr 13807
This theorem is referenced by:  2swrd1eqwrdeqOLD  13850  pfxsuff1eqwrdeq  13884  pfxlswccat  13905
  Copyright terms: Public domain W3C validator