| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swrdlsw | Structured version Visualization version GIF version | ||
| Description: Extract the last single symbol from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| Ref | Expression |
|---|---|
| swrdlsw | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉) = 〈“(lastS‘𝑊)”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashneq0 14271 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅)) | |
| 2 | lencl 14440 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
| 3 | nn0z 12493 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ) | |
| 4 | elnnz 12478 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊))) | |
| 5 | fzo0end 13658 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) | |
| 6 | 4, 5 | sylbir 235 | . . . . . . 7 ⊢ (((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) |
| 7 | 6 | ex 412 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℤ → (0 < (♯‘𝑊) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
| 8 | 2, 3, 7 | 3syl 18 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
| 9 | 1, 8 | sylbird 260 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
| 10 | 9 | imp 406 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) |
| 11 | swrds1 14574 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr 〈((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)〉) = 〈“(𝑊‘((♯‘𝑊) − 1))”〉) | |
| 12 | 10, 11 | syldan 591 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)〉) = 〈“(𝑊‘((♯‘𝑊) − 1))”〉) |
| 13 | nn0cn 12391 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ) | |
| 14 | ax-1cn 11064 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 15 | 13, 14 | jctir 520 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ)) |
| 16 | npcan 11369 | . . . . . . 7 ⊢ (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊)) | |
| 17 | 16 | eqcomd 2737 | . . . . . 6 ⊢ (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1)) |
| 18 | 2, 15, 17 | 3syl 18 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1)) |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1)) |
| 20 | 19 | opeq2d 4829 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → 〈((♯‘𝑊) − 1), (♯‘𝑊)〉 = 〈((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)〉) |
| 21 | 20 | oveq2d 7362 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉) = (𝑊 substr 〈((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)〉)) |
| 22 | lsw 14471 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) | |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| 24 | 23 | s1eqd 14509 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → 〈“(lastS‘𝑊)”〉 = 〈“(𝑊‘((♯‘𝑊) − 1))”〉) |
| 25 | 12, 21, 24 | 3eqtr4d 2776 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉) = 〈“(lastS‘𝑊)”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 〈cop 4579 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 − cmin 11344 ℕcn 12125 ℕ0cn0 12381 ℤcz 12468 ..^cfzo 13554 ♯chash 14237 Word cword 14420 lastSclsw 14469 〈“cs1 14503 substr csubstr 14548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-lsw 14470 df-s1 14504 df-substr 14549 |
| This theorem is referenced by: pfxsuff1eqwrdeq 14606 pfxlswccat 14620 |
| Copyright terms: Public domain | W3C validator |