![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrdlsw | Structured version Visualization version GIF version |
Description: Extract the last single symbol from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
Ref | Expression |
---|---|
swrdlsw | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉) = 〈“(lastS‘𝑊)”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashneq0 13543 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅)) | |
2 | lencl 13697 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
3 | nn0z 11821 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ) | |
4 | elnnz 11806 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊))) | |
5 | fzo0end 12947 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) | |
6 | 4, 5 | sylbir 227 | . . . . . . 7 ⊢ (((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) |
7 | 6 | ex 405 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℤ → (0 < (♯‘𝑊) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
8 | 2, 3, 7 | 3syl 18 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
9 | 1, 8 | sylbird 252 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
10 | 9 | imp 398 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) |
11 | swrds1 13847 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr 〈((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)〉) = 〈“(𝑊‘((♯‘𝑊) − 1))”〉) | |
12 | 10, 11 | syldan 582 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)〉) = 〈“(𝑊‘((♯‘𝑊) − 1))”〉) |
13 | nn0cn 11721 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ) | |
14 | ax-1cn 10395 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
15 | 13, 14 | jctir 513 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ)) |
16 | npcan 10698 | . . . . . . 7 ⊢ (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊)) | |
17 | 16 | eqcomd 2784 | . . . . . 6 ⊢ (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1)) |
18 | 2, 15, 17 | 3syl 18 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1)) |
19 | 18 | adantr 473 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1)) |
20 | 19 | opeq2d 4685 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → 〈((♯‘𝑊) − 1), (♯‘𝑊)〉 = 〈((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)〉) |
21 | 20 | oveq2d 6994 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉) = (𝑊 substr 〈((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)〉)) |
22 | lsw 13730 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) | |
23 | 22 | adantr 473 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
24 | 23 | s1eqd 13767 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → 〈“(lastS‘𝑊)”〉 = 〈“(𝑊‘((♯‘𝑊) − 1))”〉) |
25 | 12, 21, 24 | 3eqtr4d 2824 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉) = 〈“(lastS‘𝑊)”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ∅c0 4180 〈cop 4448 class class class wbr 4930 ‘cfv 6190 (class class class)co 6978 ℂcc 10335 0cc0 10337 1c1 10338 + caddc 10340 < clt 10476 − cmin 10672 ℕcn 11441 ℕ0cn0 11710 ℤcz 11796 ..^cfzo 12852 ♯chash 13508 Word cword 13675 lastSclsw 13728 〈“cs1 13761 substr csubstr 13806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-int 4751 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-1st 7503 df-2nd 7504 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-1o 7907 df-oadd 7911 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-fin 8312 df-card 9164 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-nn 11442 df-n0 11711 df-xnn0 11783 df-z 11797 df-uz 12062 df-fz 12712 df-fzo 12853 df-hash 13509 df-word 13676 df-lsw 13729 df-s1 13762 df-substr 13807 |
This theorem is referenced by: 2swrd1eqwrdeqOLD 13850 pfxsuff1eqwrdeq 13884 pfxlswccat 13905 |
Copyright terms: Public domain | W3C validator |