MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdlsw Structured version   Visualization version   GIF version

Theorem swrdlsw 14685
Description: Extract the last single symbol from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.)
Assertion
Ref Expression
swrdlsw ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑊)”⟩)

Proof of Theorem swrdlsw
StepHypRef Expression
1 hashneq0 14382 . . . . 5 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
2 lencl 14551 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
3 nn0z 12613 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
4 elnnz 12598 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)))
5 fzo0end 13774 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
64, 5sylbir 235 . . . . . . 7 (((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
76ex 412 . . . . . 6 ((♯‘𝑊) ∈ ℤ → (0 < (♯‘𝑊) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
82, 3, 73syl 18 . . . . 5 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
91, 8sylbird 260 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))))
109imp 406 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
11 swrds1 14684 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 1))”⟩)
1210, 11syldan 591 . 2 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 substr ⟨((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)⟩) = ⟨“(𝑊‘((♯‘𝑊) − 1))”⟩)
13 nn0cn 12511 . . . . . . 7 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ)
14 ax-1cn 11187 . . . . . . 7 1 ∈ ℂ
1513, 14jctir 520 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ))
16 npcan 11491 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
1716eqcomd 2741 . . . . . 6 (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1))
182, 15, 173syl 18 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1))
1918adantr 480 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1))
2019opeq2d 4856 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩ = ⟨((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)⟩)
2120oveq2d 7421 . 2 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = (𝑊 substr ⟨((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)⟩))
22 lsw 14582 . . . 4 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
2322adantr 480 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
2423s1eqd 14619 . 2 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ⟨“(lastS‘𝑊)”⟩ = ⟨“(𝑊‘((♯‘𝑊) − 1))”⟩)
2512, 21, 243eqtr4d 2780 1 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 substr ⟨((♯‘𝑊) − 1), (♯‘𝑊)⟩) = ⟨“(lastS‘𝑊)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  c0 4308  cop 4607   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   + caddc 11132   < clt 11269  cmin 11466  cn 12240  0cn0 12501  cz 12588  ..^cfzo 13671  chash 14348  Word cword 14531  lastSclsw 14580  ⟨“cs1 14613   substr csubstr 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-lsw 14581  df-s1 14614  df-substr 14659
This theorem is referenced by:  pfxsuff1eqwrdeq  14717  pfxlswccat  14731
  Copyright terms: Public domain W3C validator