| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swrdlsw | Structured version Visualization version GIF version | ||
| Description: Extract the last single symbol from a word. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
| Ref | Expression |
|---|---|
| swrdlsw | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉) = 〈“(lastS‘𝑊)”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashneq0 14305 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅)) | |
| 2 | lencl 14474 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
| 3 | nn0z 12530 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ) | |
| 4 | elnnz 12515 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊))) | |
| 5 | fzo0end 13695 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) | |
| 6 | 4, 5 | sylbir 235 | . . . . . . 7 ⊢ (((♯‘𝑊) ∈ ℤ ∧ 0 < (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) |
| 7 | 6 | ex 412 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℤ → (0 < (♯‘𝑊) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
| 8 | 2, 3, 7 | 3syl 18 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
| 9 | 1, 8 | sylbird 260 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))) |
| 10 | 9 | imp 406 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) |
| 11 | swrds1 14607 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → (𝑊 substr 〈((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)〉) = 〈“(𝑊‘((♯‘𝑊) − 1))”〉) | |
| 12 | 10, 11 | syldan 591 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)〉) = 〈“(𝑊‘((♯‘𝑊) − 1))”〉) |
| 13 | nn0cn 12428 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℂ) | |
| 14 | ax-1cn 11102 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 15 | 13, 14 | jctir 520 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ)) |
| 16 | npcan 11406 | . . . . . . 7 ⊢ (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊)) | |
| 17 | 16 | eqcomd 2735 | . . . . . 6 ⊢ (((♯‘𝑊) ∈ ℂ ∧ 1 ∈ ℂ) → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1)) |
| 18 | 2, 15, 17 | 3syl 18 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1)) |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) = (((♯‘𝑊) − 1) + 1)) |
| 20 | 19 | opeq2d 4840 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → 〈((♯‘𝑊) − 1), (♯‘𝑊)〉 = 〈((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)〉) |
| 21 | 20 | oveq2d 7385 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉) = (𝑊 substr 〈((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)〉)) |
| 22 | lsw 14505 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) | |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| 24 | 23 | s1eqd 14542 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → 〈“(lastS‘𝑊)”〉 = 〈“(𝑊‘((♯‘𝑊) − 1))”〉) |
| 25 | 12, 21, 24 | 3eqtr4d 2774 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊 substr 〈((♯‘𝑊) − 1), (♯‘𝑊)〉) = 〈“(lastS‘𝑊)”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 〈cop 4591 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 − cmin 11381 ℕcn 12162 ℕ0cn0 12418 ℤcz 12505 ..^cfzo 13591 ♯chash 14271 Word cword 14454 lastSclsw 14503 〈“cs1 14536 substr csubstr 14581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-lsw 14504 df-s1 14537 df-substr 14582 |
| This theorem is referenced by: pfxsuff1eqwrdeq 14640 pfxlswccat 14654 |
| Copyright terms: Public domain | W3C validator |