MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrds1 Structured version   Visualization version   GIF version

Theorem swrds1 14019
Description: Extract a single symbol from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
swrds1 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)

Proof of Theorem swrds1
StepHypRef Expression
1 swrdcl 13998 . . 3 (𝑊 ∈ Word 𝐴 → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ∈ Word 𝐴)
2 simpl 486 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝐴)
3 elfzouz 13037 . . . . . . 7 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ (ℤ‘0))
43adantl 485 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (ℤ‘0))
5 elfzoelz 13033 . . . . . . . 8 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℤ)
65adantl 485 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℤ)
7 uzid 12246 . . . . . . 7 (𝐼 ∈ ℤ → 𝐼 ∈ (ℤ𝐼))
8 peano2uz 12289 . . . . . . 7 (𝐼 ∈ (ℤ𝐼) → (𝐼 + 1) ∈ (ℤ𝐼))
96, 7, 83syl 18 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ (ℤ𝐼))
10 elfzuzb 12896 . . . . . 6 (𝐼 ∈ (0...(𝐼 + 1)) ↔ (𝐼 ∈ (ℤ‘0) ∧ (𝐼 + 1) ∈ (ℤ𝐼)))
114, 9, 10sylanbrc 586 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (0...(𝐼 + 1)))
12 fzofzp1 13129 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 + 1) ∈ (0...(♯‘𝑊)))
1312adantl 485 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ (0...(♯‘𝑊)))
14 swrdlen 14000 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0...(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = ((𝐼 + 1) − 𝐼))
152, 11, 13, 14syl3anc 1368 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = ((𝐼 + 1) − 𝐼))
166zcnd 12076 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℂ)
17 ax-1cn 10584 . . . . 5 1 ∈ ℂ
18 pncan2 10882 . . . . 5 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐼 + 1) − 𝐼) = 1)
1916, 17, 18sylancl 589 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼 + 1) − 𝐼) = 1)
2015, 19eqtrd 2857 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = 1)
21 eqs1 13957 . . 3 (((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ∈ Word 𝐴 ∧ (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = 1) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0)”⟩)
221, 20, 21syl2an2r 684 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0)”⟩)
23 0z 11980 . . . . . . 7 0 ∈ ℤ
24 snidg 4573 . . . . . . 7 (0 ∈ ℤ → 0 ∈ {0})
2523, 24ax-mp 5 . . . . . 6 0 ∈ {0}
2619oveq2d 7156 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (0..^((𝐼 + 1) − 𝐼)) = (0..^1))
27 fzo01 13114 . . . . . . 7 (0..^1) = {0}
2826, 27syl6eq 2873 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (0..^((𝐼 + 1) − 𝐼)) = {0})
2925, 28eleqtrrid 2921 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 0 ∈ (0..^((𝐼 + 1) − 𝐼)))
30 swrdfv 14001 . . . . 5 (((𝑊 ∈ Word 𝐴𝐼 ∈ (0...(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝑊))) ∧ 0 ∈ (0..^((𝐼 + 1) − 𝐼))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0) = (𝑊‘(0 + 𝐼)))
312, 11, 13, 29, 30syl31anc 1370 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0) = (𝑊‘(0 + 𝐼)))
32 addid2 10812 . . . . . . 7 (𝐼 ∈ ℂ → (0 + 𝐼) = 𝐼)
3332eqcomd 2828 . . . . . 6 (𝐼 ∈ ℂ → 𝐼 = (0 + 𝐼))
3416, 33syl 17 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 = (0 + 𝐼))
3534fveq2d 6656 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊𝐼) = (𝑊‘(0 + 𝐼)))
3631, 35eqtr4d 2860 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0) = (𝑊𝐼))
3736s1eqd 13946 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ⟨“((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0)”⟩ = ⟨“(𝑊𝐼)”⟩)
3822, 37eqtrd 2857 1 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  {csn 4539  cop 4545  cfv 6334  (class class class)co 7140  cc 10524  0cc0 10526  1c1 10527   + caddc 10529  cmin 10859  cz 11969  cuz 12231  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857  ⟨“cs1 13940   substr csubstr 13993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-s1 13941  df-substr 13994
This theorem is referenced by:  swrdlsw  14020  pfx1  14056  swrds2  14293
  Copyright terms: Public domain W3C validator