MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrds1 Structured version   Visualization version   GIF version

Theorem swrds1 14030
Description: Extract a single symbol from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
swrds1 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)

Proof of Theorem swrds1
StepHypRef Expression
1 swrdcl 14009 . . 3 (𝑊 ∈ Word 𝐴 → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ∈ Word 𝐴)
2 simpl 485 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝐴)
3 elfzouz 13045 . . . . . . 7 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ (ℤ‘0))
43adantl 484 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (ℤ‘0))
5 elfzoelz 13041 . . . . . . . 8 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℤ)
65adantl 484 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℤ)
7 uzid 12261 . . . . . . 7 (𝐼 ∈ ℤ → 𝐼 ∈ (ℤ𝐼))
8 peano2uz 12304 . . . . . . 7 (𝐼 ∈ (ℤ𝐼) → (𝐼 + 1) ∈ (ℤ𝐼))
96, 7, 83syl 18 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ (ℤ𝐼))
10 elfzuzb 12905 . . . . . 6 (𝐼 ∈ (0...(𝐼 + 1)) ↔ (𝐼 ∈ (ℤ‘0) ∧ (𝐼 + 1) ∈ (ℤ𝐼)))
114, 9, 10sylanbrc 585 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (0...(𝐼 + 1)))
12 fzofzp1 13137 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 + 1) ∈ (0...(♯‘𝑊)))
1312adantl 484 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ (0...(♯‘𝑊)))
14 swrdlen 14011 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0...(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = ((𝐼 + 1) − 𝐼))
152, 11, 13, 14syl3anc 1367 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = ((𝐼 + 1) − 𝐼))
166zcnd 12091 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℂ)
17 ax-1cn 10597 . . . . 5 1 ∈ ℂ
18 pncan2 10895 . . . . 5 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐼 + 1) − 𝐼) = 1)
1916, 17, 18sylancl 588 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼 + 1) − 𝐼) = 1)
2015, 19eqtrd 2858 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = 1)
21 eqs1 13968 . . 3 (((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ∈ Word 𝐴 ∧ (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = 1) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0)”⟩)
221, 20, 21syl2an2r 683 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0)”⟩)
23 0z 11995 . . . . . . 7 0 ∈ ℤ
24 snidg 4601 . . . . . . 7 (0 ∈ ℤ → 0 ∈ {0})
2523, 24ax-mp 5 . . . . . 6 0 ∈ {0}
2619oveq2d 7174 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (0..^((𝐼 + 1) − 𝐼)) = (0..^1))
27 fzo01 13122 . . . . . . 7 (0..^1) = {0}
2826, 27syl6eq 2874 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (0..^((𝐼 + 1) − 𝐼)) = {0})
2925, 28eleqtrrid 2922 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 0 ∈ (0..^((𝐼 + 1) − 𝐼)))
30 swrdfv 14012 . . . . 5 (((𝑊 ∈ Word 𝐴𝐼 ∈ (0...(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝑊))) ∧ 0 ∈ (0..^((𝐼 + 1) − 𝐼))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0) = (𝑊‘(0 + 𝐼)))
312, 11, 13, 29, 30syl31anc 1369 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0) = (𝑊‘(0 + 𝐼)))
32 addid2 10825 . . . . . . 7 (𝐼 ∈ ℂ → (0 + 𝐼) = 𝐼)
3332eqcomd 2829 . . . . . 6 (𝐼 ∈ ℂ → 𝐼 = (0 + 𝐼))
3416, 33syl 17 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 = (0 + 𝐼))
3534fveq2d 6676 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊𝐼) = (𝑊‘(0 + 𝐼)))
3631, 35eqtr4d 2861 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0) = (𝑊𝐼))
3736s1eqd 13957 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ⟨“((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0)”⟩ = ⟨“(𝑊𝐼)”⟩)
3822, 37eqtrd 2858 1 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {csn 4569  cop 4575  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   + caddc 10542  cmin 10872  cz 11984  cuz 12246  ...cfz 12895  ..^cfzo 13036  chash 13693  Word cword 13864  ⟨“cs1 13951   substr csubstr 14004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-s1 13952  df-substr 14005
This theorem is referenced by:  swrdlsw  14031  pfx1  14067  swrds2  14304
  Copyright terms: Public domain W3C validator