MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrds1 Structured version   Visualization version   GIF version

Theorem swrds1 14714
Description: Extract a single symbol from a word. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
swrds1 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)

Proof of Theorem swrds1
StepHypRef Expression
1 swrdcl 14693 . . 3 (𝑊 ∈ Word 𝐴 → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ∈ Word 𝐴)
2 simpl 482 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝐴)
3 elfzouz 13720 . . . . . . 7 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ (ℤ‘0))
43adantl 481 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (ℤ‘0))
5 elfzoelz 13716 . . . . . . . 8 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℤ)
65adantl 481 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℤ)
7 uzid 12918 . . . . . . 7 (𝐼 ∈ ℤ → 𝐼 ∈ (ℤ𝐼))
8 peano2uz 12966 . . . . . . 7 (𝐼 ∈ (ℤ𝐼) → (𝐼 + 1) ∈ (ℤ𝐼))
96, 7, 83syl 18 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ (ℤ𝐼))
10 elfzuzb 13578 . . . . . 6 (𝐼 ∈ (0...(𝐼 + 1)) ↔ (𝐼 ∈ (ℤ‘0) ∧ (𝐼 + 1) ∈ (ℤ𝐼)))
114, 9, 10sylanbrc 582 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ (0...(𝐼 + 1)))
12 fzofzp1 13814 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 + 1) ∈ (0...(♯‘𝑊)))
1312adantl 481 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 + 1) ∈ (0...(♯‘𝑊)))
14 swrdlen 14695 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0...(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = ((𝐼 + 1) − 𝐼))
152, 11, 13, 14syl3anc 1371 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = ((𝐼 + 1) − 𝐼))
166zcnd 12748 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℂ)
17 ax-1cn 11242 . . . . 5 1 ∈ ℂ
18 pncan2 11543 . . . . 5 ((𝐼 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐼 + 1) − 𝐼) = 1)
1916, 17, 18sylancl 585 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼 + 1) − 𝐼) = 1)
2015, 19eqtrd 2780 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = 1)
21 eqs1 14660 . . 3 (((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) ∈ Word 𝐴 ∧ (♯‘(𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)) = 1) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0)”⟩)
221, 20, 21syl2an2r 684 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0)”⟩)
23 0z 12650 . . . . . . 7 0 ∈ ℤ
24 snidg 4682 . . . . . . 7 (0 ∈ ℤ → 0 ∈ {0})
2523, 24ax-mp 5 . . . . . 6 0 ∈ {0}
2619oveq2d 7464 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (0..^((𝐼 + 1) − 𝐼)) = (0..^1))
27 fzo01 13798 . . . . . . 7 (0..^1) = {0}
2826, 27eqtrdi 2796 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (0..^((𝐼 + 1) − 𝐼)) = {0})
2925, 28eleqtrrid 2851 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 0 ∈ (0..^((𝐼 + 1) − 𝐼)))
30 swrdfv 14696 . . . . 5 (((𝑊 ∈ Word 𝐴𝐼 ∈ (0...(𝐼 + 1)) ∧ (𝐼 + 1) ∈ (0...(♯‘𝑊))) ∧ 0 ∈ (0..^((𝐼 + 1) − 𝐼))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0) = (𝑊‘(0 + 𝐼)))
312, 11, 13, 29, 30syl31anc 1373 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0) = (𝑊‘(0 + 𝐼)))
32 addlid 11473 . . . . . . 7 (𝐼 ∈ ℂ → (0 + 𝐼) = 𝐼)
3332eqcomd 2746 . . . . . 6 (𝐼 ∈ ℂ → 𝐼 = (0 + 𝐼))
3416, 33syl 17 . . . . 5 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 = (0 + 𝐼))
3534fveq2d 6924 . . . 4 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊𝐼) = (𝑊‘(0 + 𝐼)))
3631, 35eqtr4d 2783 . . 3 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0) = (𝑊𝐼))
3736s1eqd 14649 . 2 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → ⟨“((𝑊 substr ⟨𝐼, (𝐼 + 1)⟩)‘0)”⟩ = ⟨“(𝑊𝐼)”⟩)
3822, 37eqtrd 2780 1 ((𝑊 ∈ Word 𝐴𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 substr ⟨𝐼, (𝐼 + 1)⟩) = ⟨“(𝑊𝐼)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {csn 4648  cop 4654  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  cz 12639  cuz 12903  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  ⟨“cs1 14643   substr csubstr 14688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-s1 14644  df-substr 14689
This theorem is referenced by:  swrdlsw  14715  pfx1  14751  swrds2  14989
  Copyright terms: Public domain W3C validator