Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iwrdsplit Structured version   Visualization version   GIF version

Theorem iwrdsplit 31647
Description: Lemma for sseqp1 31655. (Contributed by Thierry Arnoux, 25-Apr-2019.) (Proof shortened by AV, 14-Oct-2022.)
Hypotheses
Ref Expression
iwrdsplit.s (𝜑𝑆 ∈ V)
iwrdsplit.f (𝜑𝐹:ℕ0𝑆)
iwrdsplit.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
iwrdsplit (𝜑 → (𝐹 ↾ (0..^(𝑁 + 1))) = ((𝐹 ↾ (0..^𝑁)) ++ ⟨“(𝐹𝑁)”⟩))

Proof of Theorem iwrdsplit
StepHypRef Expression
1 iwrdsplit.s . . . 4 (𝜑𝑆 ∈ V)
2 iwrdsplit.f . . . 4 (𝜑𝐹:ℕ0𝑆)
3 iwrdsplit.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
4 1nn0 11895 . . . . . 6 1 ∈ ℕ0
54a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
63, 5nn0addcld 11941 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℕ0)
71, 2, 6subiwrd 31645 . . 3 (𝜑 → (𝐹 ↾ (0..^(𝑁 + 1))) ∈ Word 𝑆)
8 1re 10622 . . . . . 6 1 ∈ ℝ
9 nn0addge2 11926 . . . . . 6 ((1 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 1 ≤ (𝑁 + 1))
108, 3, 9sylancr 589 . . . . 5 (𝜑 → 1 ≤ (𝑁 + 1))
111, 2, 6subiwrdlen 31646 . . . . 5 (𝜑 → (♯‘(𝐹 ↾ (0..^(𝑁 + 1)))) = (𝑁 + 1))
1210, 11breqtrrd 5075 . . . 4 (𝜑 → 1 ≤ (♯‘(𝐹 ↾ (0..^(𝑁 + 1)))))
13 wrdlenge1n0 13882 . . . . 5 ((𝐹 ↾ (0..^(𝑁 + 1))) ∈ Word 𝑆 → ((𝐹 ↾ (0..^(𝑁 + 1))) ≠ ∅ ↔ 1 ≤ (♯‘(𝐹 ↾ (0..^(𝑁 + 1))))))
147, 13syl 17 . . . 4 (𝜑 → ((𝐹 ↾ (0..^(𝑁 + 1))) ≠ ∅ ↔ 1 ≤ (♯‘(𝐹 ↾ (0..^(𝑁 + 1))))))
1512, 14mpbird 259 . . 3 (𝜑 → (𝐹 ↾ (0..^(𝑁 + 1))) ≠ ∅)
16 pfxlswccat 14055 . . 3 (((𝐹 ↾ (0..^(𝑁 + 1))) ∈ Word 𝑆 ∧ (𝐹 ↾ (0..^(𝑁 + 1))) ≠ ∅) → (((𝐹 ↾ (0..^(𝑁 + 1))) prefix ((♯‘(𝐹 ↾ (0..^(𝑁 + 1)))) − 1)) ++ ⟨“(lastS‘(𝐹 ↾ (0..^(𝑁 + 1))))”⟩) = (𝐹 ↾ (0..^(𝑁 + 1))))
177, 15, 16syl2anc 586 . 2 (𝜑 → (((𝐹 ↾ (0..^(𝑁 + 1))) prefix ((♯‘(𝐹 ↾ (0..^(𝑁 + 1)))) − 1)) ++ ⟨“(lastS‘(𝐹 ↾ (0..^(𝑁 + 1))))”⟩) = (𝐹 ↾ (0..^(𝑁 + 1))))
183nn0cnd 11939 . . . . . 6 (𝜑𝑁 ∈ ℂ)
19 1cnd 10617 . . . . . 6 (𝜑 → 1 ∈ ℂ)
2018, 19, 11mvrraddd 11033 . . . . 5 (𝜑 → ((♯‘(𝐹 ↾ (0..^(𝑁 + 1)))) − 1) = 𝑁)
2120oveq2d 7153 . . . 4 (𝜑 → ((𝐹 ↾ (0..^(𝑁 + 1))) prefix ((♯‘(𝐹 ↾ (0..^(𝑁 + 1)))) − 1)) = ((𝐹 ↾ (0..^(𝑁 + 1))) prefix 𝑁))
22 nn0fz0 12990 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
233, 22sylib 220 . . . . . . 7 (𝜑𝑁 ∈ (0...𝑁))
24 elfz0add 12991 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (𝑁 ∈ (0...𝑁) → 𝑁 ∈ (0...(𝑁 + 1))))
2524imp 409 . . . . . . 7 (((𝑁 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ 𝑁 ∈ (0...𝑁)) → 𝑁 ∈ (0...(𝑁 + 1)))
263, 5, 23, 25syl21anc 835 . . . . . 6 (𝜑𝑁 ∈ (0...(𝑁 + 1)))
2711oveq2d 7153 . . . . . 6 (𝜑 → (0...(♯‘(𝐹 ↾ (0..^(𝑁 + 1))))) = (0...(𝑁 + 1)))
2826, 27eleqtrrd 2914 . . . . 5 (𝜑𝑁 ∈ (0...(♯‘(𝐹 ↾ (0..^(𝑁 + 1))))))
29 pfxres 14021 . . . . 5 (((𝐹 ↾ (0..^(𝑁 + 1))) ∈ Word 𝑆𝑁 ∈ (0...(♯‘(𝐹 ↾ (0..^(𝑁 + 1)))))) → ((𝐹 ↾ (0..^(𝑁 + 1))) prefix 𝑁) = ((𝐹 ↾ (0..^(𝑁 + 1))) ↾ (0..^𝑁)))
307, 28, 29syl2anc 586 . . . 4 (𝜑 → ((𝐹 ↾ (0..^(𝑁 + 1))) prefix 𝑁) = ((𝐹 ↾ (0..^(𝑁 + 1))) ↾ (0..^𝑁)))
31 fzossfzop1 13100 . . . . 5 (𝑁 ∈ ℕ0 → (0..^𝑁) ⊆ (0..^(𝑁 + 1)))
32 resabs1 5864 . . . . 5 ((0..^𝑁) ⊆ (0..^(𝑁 + 1)) → ((𝐹 ↾ (0..^(𝑁 + 1))) ↾ (0..^𝑁)) = (𝐹 ↾ (0..^𝑁)))
333, 31, 323syl 18 . . . 4 (𝜑 → ((𝐹 ↾ (0..^(𝑁 + 1))) ↾ (0..^𝑁)) = (𝐹 ↾ (0..^𝑁)))
3421, 30, 333eqtrd 2859 . . 3 (𝜑 → ((𝐹 ↾ (0..^(𝑁 + 1))) prefix ((♯‘(𝐹 ↾ (0..^(𝑁 + 1)))) − 1)) = (𝐹 ↾ (0..^𝑁)))
35 lsw 13896 . . . . . 6 ((𝐹 ↾ (0..^(𝑁 + 1))) ∈ Word 𝑆 → (lastS‘(𝐹 ↾ (0..^(𝑁 + 1)))) = ((𝐹 ↾ (0..^(𝑁 + 1)))‘((♯‘(𝐹 ↾ (0..^(𝑁 + 1)))) − 1)))
367, 35syl 17 . . . . 5 (𝜑 → (lastS‘(𝐹 ↾ (0..^(𝑁 + 1)))) = ((𝐹 ↾ (0..^(𝑁 + 1)))‘((♯‘(𝐹 ↾ (0..^(𝑁 + 1)))) − 1)))
3720fveq2d 6655 . . . . 5 (𝜑 → ((𝐹 ↾ (0..^(𝑁 + 1)))‘((♯‘(𝐹 ↾ (0..^(𝑁 + 1)))) − 1)) = ((𝐹 ↾ (0..^(𝑁 + 1)))‘𝑁))
38 fzonn0p1 13099 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
39 fvres 6670 . . . . . 6 (𝑁 ∈ (0..^(𝑁 + 1)) → ((𝐹 ↾ (0..^(𝑁 + 1)))‘𝑁) = (𝐹𝑁))
403, 38, 393syl 18 . . . . 5 (𝜑 → ((𝐹 ↾ (0..^(𝑁 + 1)))‘𝑁) = (𝐹𝑁))
4136, 37, 403eqtrd 2859 . . . 4 (𝜑 → (lastS‘(𝐹 ↾ (0..^(𝑁 + 1)))) = (𝐹𝑁))
4241s1eqd 13935 . . 3 (𝜑 → ⟨“(lastS‘(𝐹 ↾ (0..^(𝑁 + 1))))”⟩ = ⟨“(𝐹𝑁)”⟩)
4334, 42oveq12d 7155 . 2 (𝜑 → (((𝐹 ↾ (0..^(𝑁 + 1))) prefix ((♯‘(𝐹 ↾ (0..^(𝑁 + 1)))) − 1)) ++ ⟨“(lastS‘(𝐹 ↾ (0..^(𝑁 + 1))))”⟩) = ((𝐹 ↾ (0..^𝑁)) ++ ⟨“(𝐹𝑁)”⟩))
4417, 43eqtr3d 2857 1 (𝜑 → (𝐹 ↾ (0..^(𝑁 + 1))) = ((𝐹 ↾ (0..^𝑁)) ++ ⟨“(𝐹𝑁)”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3011  Vcvv 3481  wss 3919  c0 4274   class class class wbr 5047  cres 5538  wf 6332  cfv 6336  (class class class)co 7137  cr 10517  0cc0 10518  1c1 10519   + caddc 10521  cle 10657  cmin 10851  0cn0 11879  ...cfz 12877  ..^cfzo 13018  chash 13675  Word cword 13846  lastSclsw 13894   ++ cconcat 13902  ⟨“cs1 13929   prefix cpfx 14012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442  ax-cnex 10574  ax-resscn 10575  ax-1cn 10576  ax-icn 10577  ax-addcl 10578  ax-addrcl 10579  ax-mulcl 10580  ax-mulrcl 10581  ax-mulcom 10582  ax-addass 10583  ax-mulass 10584  ax-distr 10585  ax-i2m1 10586  ax-1ne0 10587  ax-1rid 10588  ax-rnegex 10589  ax-rrecex 10590  ax-cnre 10591  ax-pre-lttri 10592  ax-pre-lttrn 10593  ax-pre-ltadd 10594  ax-pre-mulgt0 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7095  df-ov 7140  df-oprab 7141  df-mpo 7142  df-om 7562  df-1st 7670  df-2nd 7671  df-wrecs 7928  df-recs 7989  df-rdg 8027  df-1o 8083  df-oadd 8087  df-er 8270  df-en 8491  df-dom 8492  df-sdom 8493  df-fin 8494  df-card 9349  df-pnf 10658  df-mnf 10659  df-xr 10660  df-ltxr 10661  df-le 10662  df-sub 10853  df-neg 10854  df-nn 11620  df-n0 11880  df-xnn0 11950  df-z 11964  df-uz 12226  df-fz 12878  df-fzo 13019  df-hash 13676  df-word 13847  df-lsw 13895  df-concat 13903  df-s1 13930  df-substr 13983  df-pfx 14013
This theorem is referenced by:  sseqp1  31655
  Copyright terms: Public domain W3C validator