Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqf Structured version   Visualization version   GIF version

Theorem sseqf 34390
Description: A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.) (Proof shortened by AV, 7-Mar-2022.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
Assertion
Ref Expression
sseqf (𝜑 → (𝑀seqstr𝐹):ℕ0𝑆)

Proof of Theorem sseqf
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqval.2 . . . 4 (𝜑𝑀 ∈ Word 𝑆)
2 wrdf 14490 . . . 4 (𝑀 ∈ Word 𝑆𝑀:(0..^(♯‘𝑀))⟶𝑆)
31, 2syl 17 . . 3 (𝜑𝑀:(0..^(♯‘𝑀))⟶𝑆)
4 vex 3454 . . . . . . . . 9 𝑤 ∈ V
54a1i 11 . . . . . . . 8 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → 𝑤 ∈ V)
6 fvex 6874 . . . . . . . . 9 (𝑥‘((♯‘𝑥) − 1)) ∈ V
7 df-lsw 14535 . . . . . . . . 9 lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1)))
86, 7dmmpti 6665 . . . . . . . 8 dom lastS = V
95, 8eleqtrrdi 2840 . . . . . . 7 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → 𝑤 ∈ dom lastS)
10 eldifsn 4753 . . . . . . . . 9 (𝑤 ∈ (𝑊 ∖ {∅}) ↔ (𝑤𝑊𝑤 ≠ ∅))
11 sseqval.3 . . . . . . . . . . . 12 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
12 inss1 4203 . . . . . . . . . . . 12 (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))) ⊆ Word 𝑆
1311, 12eqsstri 3996 . . . . . . . . . . 11 𝑊 ⊆ Word 𝑆
1413sseli 3945 . . . . . . . . . 10 (𝑤𝑊𝑤 ∈ Word 𝑆)
15 lswcl 14540 . . . . . . . . . 10 ((𝑤 ∈ Word 𝑆𝑤 ≠ ∅) → (lastS‘𝑤) ∈ 𝑆)
1614, 15sylan 580 . . . . . . . . 9 ((𝑤𝑊𝑤 ≠ ∅) → (lastS‘𝑤) ∈ 𝑆)
1710, 16sylbi 217 . . . . . . . 8 (𝑤 ∈ (𝑊 ∖ {∅}) → (lastS‘𝑤) ∈ 𝑆)
1817adantl 481 . . . . . . 7 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → (lastS‘𝑤) ∈ 𝑆)
199, 18jca 511 . . . . . 6 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → (𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆))
2019ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆))
216, 7fnmpti 6664 . . . . . 6 lastS Fn V
22 fnfun 6621 . . . . . 6 (lastS Fn V → Fun lastS)
23 ffvresb 7100 . . . . . 6 (Fun lastS → ((lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ↔ ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆)))
2421, 22, 23mp2b 10 . . . . 5 ((lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ↔ ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆))
2520, 24sylibr 234 . . . 4 (𝜑 → (lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆)
26 eqid 2730 . . . . 5 (ℤ‘(♯‘𝑀)) = (ℤ‘(♯‘𝑀))
27 lencl 14505 . . . . . . 7 (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0)
2827nn0zd 12562 . . . . . 6 (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℤ)
291, 28syl 17 . . . . 5 (𝜑 → (♯‘𝑀) ∈ ℤ)
30 ovex 7423 . . . . . . 7 (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V
31 simpr 484 . . . . . . . . 9 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → 𝑎 ∈ (ℤ‘(♯‘𝑀)))
321, 27syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝑀) ∈ ℕ0)
3332adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (♯‘𝑀) ∈ ℕ0)
34 elnn0uz 12845 . . . . . . . . . 10 ((♯‘𝑀) ∈ ℕ0 ↔ (♯‘𝑀) ∈ (ℤ‘0))
3533, 34sylib 218 . . . . . . . . 9 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (♯‘𝑀) ∈ (ℤ‘0))
36 uztrn 12818 . . . . . . . . 9 ((𝑎 ∈ (ℤ‘(♯‘𝑀)) ∧ (♯‘𝑀) ∈ (ℤ‘0)) → 𝑎 ∈ (ℤ‘0))
3731, 35, 36syl2anc 584 . . . . . . . 8 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → 𝑎 ∈ (ℤ‘0))
38 nn0uz 12842 . . . . . . . 8 0 = (ℤ‘0)
3937, 38eleqtrrdi 2840 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → 𝑎 ∈ ℕ0)
40 fvconst2g 7179 . . . . . . 7 (((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ 𝑎 ∈ ℕ0) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
4130, 39, 40sylancr 587 . . . . . 6 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
42 sseqval.4 . . . . . . . . . . . . 13 (𝜑𝐹:𝑊𝑆)
43 sseqval.1 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
4443, 1, 11, 42sseqmw 34389 . . . . . . . . . . . . 13 (𝜑𝑀𝑊)
4542, 44ffvelcdmd 7060 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑀) ∈ 𝑆)
4645s1cld 14575 . . . . . . . . . . 11 (𝜑 → ⟨“(𝐹𝑀)”⟩ ∈ Word 𝑆)
47 ccatcl 14546 . . . . . . . . . . 11 ((𝑀 ∈ Word 𝑆 ∧ ⟨“(𝐹𝑀)”⟩ ∈ Word 𝑆) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ Word 𝑆)
481, 46, 47syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ Word 𝑆)
4930a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V)
50 ccatws1len 14592 . . . . . . . . . . . . 13 (𝑀 ∈ Word 𝑆 → (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) = ((♯‘𝑀) + 1))
511, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) = ((♯‘𝑀) + 1))
52 uzid 12815 . . . . . . . . . . . . 13 ((♯‘𝑀) ∈ ℤ → (♯‘𝑀) ∈ (ℤ‘(♯‘𝑀)))
53 peano2uz 12867 . . . . . . . . . . . . 13 ((♯‘𝑀) ∈ (ℤ‘(♯‘𝑀)) → ((♯‘𝑀) + 1) ∈ (ℤ‘(♯‘𝑀)))
5429, 52, 533syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑀) + 1) ∈ (ℤ‘(♯‘𝑀)))
5551, 54eqeltrd 2829 . . . . . . . . . . 11 (𝜑 → (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(♯‘𝑀)))
56 hashf 14310 . . . . . . . . . . . 12 ♯:V⟶(ℕ0 ∪ {+∞})
57 ffn 6691 . . . . . . . . . . . 12 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
58 elpreima 7033 . . . . . . . . . . . 12 (♯ Fn V → ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(♯‘𝑀)))))
5956, 57, 58mp2b 10 . . . . . . . . . . 11 ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(♯‘𝑀))))
6049, 55, 59sylanbrc 583 . . . . . . . . . 10 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))))
6148, 60elind 4166 . . . . . . . . 9 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))))
6261, 11eleqtrrdi 2840 . . . . . . . 8 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊)
6362adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊)
64 ccatws1n0 14604 . . . . . . . . 9 (𝑀 ∈ Word 𝑆 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅)
651, 64syl 17 . . . . . . . 8 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅)
6665adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅)
67 eldifsn 4753 . . . . . . 7 ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (𝑊 ∖ {∅}) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊 ∧ (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅))
6863, 66, 67sylanbrc 583 . . . . . 6 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (𝑊 ∖ {∅}))
6941, 68eqeltrd 2829 . . . . 5 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) ∈ (𝑊 ∖ {∅}))
70 eqidd 2731 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)))
71 simprl 770 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → 𝑥 = 𝑎)
7271fveq2d 6865 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → (𝐹𝑥) = (𝐹𝑎))
7372s1eqd 14573 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ⟨“(𝐹𝑥)”⟩ = ⟨“(𝐹𝑎)”⟩)
7471, 73oveq12d 7408 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → (𝑥 ++ ⟨“(𝐹𝑥)”⟩) = (𝑎 ++ ⟨“(𝐹𝑎)”⟩))
75 vex 3454 . . . . . . . 8 𝑎 ∈ V
7675a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ V)
77 vex 3454 . . . . . . . 8 𝑏 ∈ V
7877a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑏 ∈ V)
79 ovex 7423 . . . . . . . 8 (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V
8079a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V)
8170, 74, 76, 78, 80ovmpod 7544 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩))𝑏) = (𝑎 ++ ⟨“(𝐹𝑎)”⟩))
82 eldifi 4097 . . . . . . . . . . . 12 (𝑎 ∈ (𝑊 ∖ {∅}) → 𝑎𝑊)
8382ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎𝑊)
8413, 83sselid 3947 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ Word 𝑆)
8542adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝐹:𝑊𝑆)
8685, 83ffvelcdmd 7060 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝐹𝑎) ∈ 𝑆)
8786s1cld 14575 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → ⟨“(𝐹𝑎)”⟩ ∈ Word 𝑆)
88 ccatcl 14546 . . . . . . . . . 10 ((𝑎 ∈ Word 𝑆 ∧ ⟨“(𝐹𝑎)”⟩ ∈ Word 𝑆) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ Word 𝑆)
8984, 87, 88syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ Word 𝑆)
9013, 82sselid 3947 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑊 ∖ {∅}) → 𝑎 ∈ Word 𝑆)
9190ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ Word 𝑆)
92 ccatws1len 14592 . . . . . . . . . . . 12 (𝑎 ∈ Word 𝑆 → (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) = ((♯‘𝑎) + 1))
9391, 92syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) = ((♯‘𝑎) + 1))
9483, 11eleqtrdi 2839 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))))
9594elin2d 4171 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ (♯ “ (ℤ‘(♯‘𝑀))))
96 elpreima 7033 . . . . . . . . . . . . . 14 (♯ Fn V → (𝑎 ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ (𝑎 ∈ V ∧ (♯‘𝑎) ∈ (ℤ‘(♯‘𝑀)))))
9756, 57, 96mp2b 10 . . . . . . . . . . . . 13 (𝑎 ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ (𝑎 ∈ V ∧ (♯‘𝑎) ∈ (ℤ‘(♯‘𝑀))))
9895, 97sylib 218 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ∈ V ∧ (♯‘𝑎) ∈ (ℤ‘(♯‘𝑀))))
99 peano2uz 12867 . . . . . . . . . . . 12 ((♯‘𝑎) ∈ (ℤ‘(♯‘𝑀)) → ((♯‘𝑎) + 1) ∈ (ℤ‘(♯‘𝑀)))
10098, 99simpl2im 503 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → ((♯‘𝑎) + 1) ∈ (ℤ‘(♯‘𝑀)))
10193, 100eqeltrd 2829 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(♯‘𝑀)))
102 elpreima 7033 . . . . . . . . . . 11 (♯ Fn V → ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V ∧ (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(♯‘𝑀)))))
10356, 57, 102mp2b 10 . . . . . . . . . 10 ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V ∧ (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(♯‘𝑀))))
10480, 101, 103sylanbrc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))))
10589, 104elind 4166 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))))
106105, 11eleqtrrdi 2840 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ 𝑊)
107 ccatws1n0 14604 . . . . . . . 8 (𝑎 ∈ Word 𝑆 → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅)
10891, 107syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅)
109 eldifsn 4753 . . . . . . 7 ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (𝑊 ∖ {∅}) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ 𝑊 ∧ (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅))
110106, 108, 109sylanbrc 583 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (𝑊 ∖ {∅}))
11181, 110eqeltrd 2829 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩))𝑏) ∈ (𝑊 ∖ {∅}))
11226, 29, 69, 111seqf 13995 . . . 4 (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})):(ℤ‘(♯‘𝑀))⟶(𝑊 ∖ {∅}))
113 fco2 6717 . . . 4 (((lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})):(ℤ‘(♯‘𝑀))⟶(𝑊 ∖ {∅})) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(♯‘𝑀))⟶𝑆)
11425, 112, 113syl2anc 584 . . 3 (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(♯‘𝑀))⟶𝑆)
115 fzouzdisj 13663 . . . 4 ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅
116115a1i 11 . . 3 (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅)
117 fun 6725 . . 3 (((𝑀:(0..^(♯‘𝑀))⟶𝑆 ∧ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(♯‘𝑀))⟶𝑆) ∧ ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅) → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀)))⟶(𝑆𝑆))
1183, 114, 116, 117syl21anc 837 . 2 (𝜑 → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀)))⟶(𝑆𝑆))
11943, 1, 11, 42sseqval 34386 . . 3 (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
120 fzouzsplit 13662 . . . . . 6 ((♯‘𝑀) ∈ (ℤ‘0) → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
12134, 120sylbi 217 . . . . 5 ((♯‘𝑀) ∈ ℕ0 → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
1221, 27, 1213syl 18 . . . 4 (𝜑 → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
12338, 122eqtrid 2777 . . 3 (𝜑 → ℕ0 = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
124 unidm 4123 . . . . 5 (𝑆𝑆) = 𝑆
125124a1i 11 . . . 4 (𝜑 → (𝑆𝑆) = 𝑆)
126125eqcomd 2736 . . 3 (𝜑𝑆 = (𝑆𝑆))
127119, 123, 126feq123d 6680 . 2 (𝜑 → ((𝑀seqstr𝐹):ℕ0𝑆 ↔ (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀)))⟶(𝑆𝑆)))
128118, 127mpbird 257 1 (𝜑 → (𝑀seqstr𝐹):ℕ0𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cdif 3914  cun 3915  cin 3916  c0 4299  {csn 4592   × cxp 5639  ccnv 5640  dom cdm 5641  cres 5643  cima 5644  ccom 5645  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  0cc0 11075  1c1 11076   + caddc 11078  +∞cpnf 11212  cmin 11412  0cn0 12449  cz 12536  cuz 12800  ..^cfzo 13622  seqcseq 13973  chash 14302  Word cword 14485  lastSclsw 14534   ++ cconcat 14542  ⟨“cs1 14567  seqstrcsseq 34381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-sseq 34382
This theorem is referenced by:  sseqp1  34393  fibp1  34399
  Copyright terms: Public domain W3C validator