Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqf Structured version   Visualization version   GIF version

Theorem sseqf 34400
Description: A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.) (Proof shortened by AV, 7-Mar-2022.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
Assertion
Ref Expression
sseqf (𝜑 → (𝑀seqstr𝐹):ℕ0𝑆)

Proof of Theorem sseqf
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqval.2 . . . 4 (𝜑𝑀 ∈ Word 𝑆)
2 wrdf 14422 . . . 4 (𝑀 ∈ Word 𝑆𝑀:(0..^(♯‘𝑀))⟶𝑆)
31, 2syl 17 . . 3 (𝜑𝑀:(0..^(♯‘𝑀))⟶𝑆)
4 vex 3440 . . . . . . . . 9 𝑤 ∈ V
54a1i 11 . . . . . . . 8 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → 𝑤 ∈ V)
6 fvex 6835 . . . . . . . . 9 (𝑥‘((♯‘𝑥) − 1)) ∈ V
7 df-lsw 14467 . . . . . . . . 9 lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1)))
86, 7dmmpti 6625 . . . . . . . 8 dom lastS = V
95, 8eleqtrrdi 2842 . . . . . . 7 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → 𝑤 ∈ dom lastS)
10 eldifsn 4738 . . . . . . . . 9 (𝑤 ∈ (𝑊 ∖ {∅}) ↔ (𝑤𝑊𝑤 ≠ ∅))
11 sseqval.3 . . . . . . . . . . . 12 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
12 inss1 4187 . . . . . . . . . . . 12 (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))) ⊆ Word 𝑆
1311, 12eqsstri 3981 . . . . . . . . . . 11 𝑊 ⊆ Word 𝑆
1413sseli 3930 . . . . . . . . . 10 (𝑤𝑊𝑤 ∈ Word 𝑆)
15 lswcl 14472 . . . . . . . . . 10 ((𝑤 ∈ Word 𝑆𝑤 ≠ ∅) → (lastS‘𝑤) ∈ 𝑆)
1614, 15sylan 580 . . . . . . . . 9 ((𝑤𝑊𝑤 ≠ ∅) → (lastS‘𝑤) ∈ 𝑆)
1710, 16sylbi 217 . . . . . . . 8 (𝑤 ∈ (𝑊 ∖ {∅}) → (lastS‘𝑤) ∈ 𝑆)
1817adantl 481 . . . . . . 7 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → (lastS‘𝑤) ∈ 𝑆)
199, 18jca 511 . . . . . 6 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → (𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆))
2019ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆))
216, 7fnmpti 6624 . . . . . 6 lastS Fn V
22 fnfun 6581 . . . . . 6 (lastS Fn V → Fun lastS)
23 ffvresb 7058 . . . . . 6 (Fun lastS → ((lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ↔ ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆)))
2421, 22, 23mp2b 10 . . . . 5 ((lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ↔ ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆))
2520, 24sylibr 234 . . . 4 (𝜑 → (lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆)
26 eqid 2731 . . . . 5 (ℤ‘(♯‘𝑀)) = (ℤ‘(♯‘𝑀))
27 lencl 14437 . . . . . . 7 (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0)
2827nn0zd 12491 . . . . . 6 (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℤ)
291, 28syl 17 . . . . 5 (𝜑 → (♯‘𝑀) ∈ ℤ)
30 ovex 7379 . . . . . . 7 (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V
31 simpr 484 . . . . . . . . 9 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → 𝑎 ∈ (ℤ‘(♯‘𝑀)))
321, 27syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝑀) ∈ ℕ0)
3332adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (♯‘𝑀) ∈ ℕ0)
34 elnn0uz 12774 . . . . . . . . . 10 ((♯‘𝑀) ∈ ℕ0 ↔ (♯‘𝑀) ∈ (ℤ‘0))
3533, 34sylib 218 . . . . . . . . 9 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (♯‘𝑀) ∈ (ℤ‘0))
36 uztrn 12747 . . . . . . . . 9 ((𝑎 ∈ (ℤ‘(♯‘𝑀)) ∧ (♯‘𝑀) ∈ (ℤ‘0)) → 𝑎 ∈ (ℤ‘0))
3731, 35, 36syl2anc 584 . . . . . . . 8 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → 𝑎 ∈ (ℤ‘0))
38 nn0uz 12771 . . . . . . . 8 0 = (ℤ‘0)
3937, 38eleqtrrdi 2842 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → 𝑎 ∈ ℕ0)
40 fvconst2g 7136 . . . . . . 7 (((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ 𝑎 ∈ ℕ0) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
4130, 39, 40sylancr 587 . . . . . 6 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
42 sseqval.4 . . . . . . . . . . . . 13 (𝜑𝐹:𝑊𝑆)
43 sseqval.1 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
4443, 1, 11, 42sseqmw 34399 . . . . . . . . . . . . 13 (𝜑𝑀𝑊)
4542, 44ffvelcdmd 7018 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑀) ∈ 𝑆)
4645s1cld 14508 . . . . . . . . . . 11 (𝜑 → ⟨“(𝐹𝑀)”⟩ ∈ Word 𝑆)
47 ccatcl 14478 . . . . . . . . . . 11 ((𝑀 ∈ Word 𝑆 ∧ ⟨“(𝐹𝑀)”⟩ ∈ Word 𝑆) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ Word 𝑆)
481, 46, 47syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ Word 𝑆)
4930a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V)
50 ccatws1len 14525 . . . . . . . . . . . . 13 (𝑀 ∈ Word 𝑆 → (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) = ((♯‘𝑀) + 1))
511, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) = ((♯‘𝑀) + 1))
52 uzid 12744 . . . . . . . . . . . . 13 ((♯‘𝑀) ∈ ℤ → (♯‘𝑀) ∈ (ℤ‘(♯‘𝑀)))
53 peano2uz 12796 . . . . . . . . . . . . 13 ((♯‘𝑀) ∈ (ℤ‘(♯‘𝑀)) → ((♯‘𝑀) + 1) ∈ (ℤ‘(♯‘𝑀)))
5429, 52, 533syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑀) + 1) ∈ (ℤ‘(♯‘𝑀)))
5551, 54eqeltrd 2831 . . . . . . . . . . 11 (𝜑 → (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(♯‘𝑀)))
56 hashf 14242 . . . . . . . . . . . 12 ♯:V⟶(ℕ0 ∪ {+∞})
57 ffn 6651 . . . . . . . . . . . 12 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
58 elpreima 6991 . . . . . . . . . . . 12 (♯ Fn V → ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(♯‘𝑀)))))
5956, 57, 58mp2b 10 . . . . . . . . . . 11 ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(♯‘𝑀))))
6049, 55, 59sylanbrc 583 . . . . . . . . . 10 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))))
6148, 60elind 4150 . . . . . . . . 9 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))))
6261, 11eleqtrrdi 2842 . . . . . . . 8 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊)
6362adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊)
64 ccatws1n0 14537 . . . . . . . . 9 (𝑀 ∈ Word 𝑆 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅)
651, 64syl 17 . . . . . . . 8 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅)
6665adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅)
67 eldifsn 4738 . . . . . . 7 ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (𝑊 ∖ {∅}) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊 ∧ (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅))
6863, 66, 67sylanbrc 583 . . . . . 6 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (𝑊 ∖ {∅}))
6941, 68eqeltrd 2831 . . . . 5 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) ∈ (𝑊 ∖ {∅}))
70 eqidd 2732 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)))
71 simprl 770 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → 𝑥 = 𝑎)
7271fveq2d 6826 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → (𝐹𝑥) = (𝐹𝑎))
7372s1eqd 14506 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ⟨“(𝐹𝑥)”⟩ = ⟨“(𝐹𝑎)”⟩)
7471, 73oveq12d 7364 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → (𝑥 ++ ⟨“(𝐹𝑥)”⟩) = (𝑎 ++ ⟨“(𝐹𝑎)”⟩))
75 vex 3440 . . . . . . . 8 𝑎 ∈ V
7675a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ V)
77 vex 3440 . . . . . . . 8 𝑏 ∈ V
7877a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑏 ∈ V)
79 ovex 7379 . . . . . . . 8 (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V
8079a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V)
8170, 74, 76, 78, 80ovmpod 7498 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩))𝑏) = (𝑎 ++ ⟨“(𝐹𝑎)”⟩))
82 eldifi 4081 . . . . . . . . . . . 12 (𝑎 ∈ (𝑊 ∖ {∅}) → 𝑎𝑊)
8382ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎𝑊)
8413, 83sselid 3932 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ Word 𝑆)
8542adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝐹:𝑊𝑆)
8685, 83ffvelcdmd 7018 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝐹𝑎) ∈ 𝑆)
8786s1cld 14508 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → ⟨“(𝐹𝑎)”⟩ ∈ Word 𝑆)
88 ccatcl 14478 . . . . . . . . . 10 ((𝑎 ∈ Word 𝑆 ∧ ⟨“(𝐹𝑎)”⟩ ∈ Word 𝑆) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ Word 𝑆)
8984, 87, 88syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ Word 𝑆)
9013, 82sselid 3932 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑊 ∖ {∅}) → 𝑎 ∈ Word 𝑆)
9190ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ Word 𝑆)
92 ccatws1len 14525 . . . . . . . . . . . 12 (𝑎 ∈ Word 𝑆 → (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) = ((♯‘𝑎) + 1))
9391, 92syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) = ((♯‘𝑎) + 1))
9483, 11eleqtrdi 2841 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))))
9594elin2d 4155 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ (♯ “ (ℤ‘(♯‘𝑀))))
96 elpreima 6991 . . . . . . . . . . . . . 14 (♯ Fn V → (𝑎 ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ (𝑎 ∈ V ∧ (♯‘𝑎) ∈ (ℤ‘(♯‘𝑀)))))
9756, 57, 96mp2b 10 . . . . . . . . . . . . 13 (𝑎 ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ (𝑎 ∈ V ∧ (♯‘𝑎) ∈ (ℤ‘(♯‘𝑀))))
9895, 97sylib 218 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ∈ V ∧ (♯‘𝑎) ∈ (ℤ‘(♯‘𝑀))))
99 peano2uz 12796 . . . . . . . . . . . 12 ((♯‘𝑎) ∈ (ℤ‘(♯‘𝑀)) → ((♯‘𝑎) + 1) ∈ (ℤ‘(♯‘𝑀)))
10098, 99simpl2im 503 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → ((♯‘𝑎) + 1) ∈ (ℤ‘(♯‘𝑀)))
10193, 100eqeltrd 2831 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(♯‘𝑀)))
102 elpreima 6991 . . . . . . . . . . 11 (♯ Fn V → ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V ∧ (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(♯‘𝑀)))))
10356, 57, 102mp2b 10 . . . . . . . . . 10 ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V ∧ (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(♯‘𝑀))))
10480, 101, 103sylanbrc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))))
10589, 104elind 4150 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))))
106105, 11eleqtrrdi 2842 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ 𝑊)
107 ccatws1n0 14537 . . . . . . . 8 (𝑎 ∈ Word 𝑆 → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅)
10891, 107syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅)
109 eldifsn 4738 . . . . . . 7 ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (𝑊 ∖ {∅}) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ 𝑊 ∧ (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅))
110106, 108, 109sylanbrc 583 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (𝑊 ∖ {∅}))
11181, 110eqeltrd 2831 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩))𝑏) ∈ (𝑊 ∖ {∅}))
11226, 29, 69, 111seqf 13927 . . . 4 (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})):(ℤ‘(♯‘𝑀))⟶(𝑊 ∖ {∅}))
113 fco2 6677 . . . 4 (((lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})):(ℤ‘(♯‘𝑀))⟶(𝑊 ∖ {∅})) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(♯‘𝑀))⟶𝑆)
11425, 112, 113syl2anc 584 . . 3 (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(♯‘𝑀))⟶𝑆)
115 fzouzdisj 13592 . . . 4 ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅
116115a1i 11 . . 3 (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅)
117 fun 6685 . . 3 (((𝑀:(0..^(♯‘𝑀))⟶𝑆 ∧ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(♯‘𝑀))⟶𝑆) ∧ ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅) → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀)))⟶(𝑆𝑆))
1183, 114, 116, 117syl21anc 837 . 2 (𝜑 → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀)))⟶(𝑆𝑆))
11943, 1, 11, 42sseqval 34396 . . 3 (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
120 fzouzsplit 13591 . . . . . 6 ((♯‘𝑀) ∈ (ℤ‘0) → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
12134, 120sylbi 217 . . . . 5 ((♯‘𝑀) ∈ ℕ0 → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
1221, 27, 1213syl 18 . . . 4 (𝜑 → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
12338, 122eqtrid 2778 . . 3 (𝜑 → ℕ0 = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
124 unidm 4107 . . . . 5 (𝑆𝑆) = 𝑆
125124a1i 11 . . . 4 (𝜑 → (𝑆𝑆) = 𝑆)
126125eqcomd 2737 . . 3 (𝜑𝑆 = (𝑆𝑆))
127119, 123, 126feq123d 6640 . 2 (𝜑 → ((𝑀seqstr𝐹):ℕ0𝑆 ↔ (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀)))⟶(𝑆𝑆)))
128118, 127mpbird 257 1 (𝜑 → (𝑀seqstr𝐹):ℕ0𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cdif 3899  cun 3900  cin 3901  c0 4283  {csn 4576   × cxp 5614  ccnv 5615  dom cdm 5616  cres 5618  cima 5619  ccom 5620  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  0cc0 11003  1c1 11004   + caddc 11006  +∞cpnf 11140  cmin 11341  0cn0 12378  cz 12465  cuz 12729  ..^cfzo 13551  seqcseq 13905  chash 14234  Word cword 14417  lastSclsw 14466   ++ cconcat 14474  ⟨“cs1 14500  seqstrcsseq 34391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-word 14418  df-lsw 14467  df-concat 14475  df-s1 14501  df-sseq 34392
This theorem is referenced by:  sseqp1  34403  fibp1  34409
  Copyright terms: Public domain W3C validator