Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqf Structured version   Visualization version   GIF version

Theorem sseqf 32259
Description: A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.) (Proof shortened by AV, 7-Mar-2022.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
Assertion
Ref Expression
sseqf (𝜑 → (𝑀seqstr𝐹):ℕ0𝑆)

Proof of Theorem sseqf
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqval.2 . . . 4 (𝜑𝑀 ∈ Word 𝑆)
2 wrdf 14150 . . . 4 (𝑀 ∈ Word 𝑆𝑀:(0..^(♯‘𝑀))⟶𝑆)
31, 2syl 17 . . 3 (𝜑𝑀:(0..^(♯‘𝑀))⟶𝑆)
4 vex 3426 . . . . . . . . 9 𝑤 ∈ V
54a1i 11 . . . . . . . 8 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → 𝑤 ∈ V)
6 fvex 6769 . . . . . . . . 9 (𝑥‘((♯‘𝑥) − 1)) ∈ V
7 df-lsw 14194 . . . . . . . . 9 lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1)))
86, 7dmmpti 6561 . . . . . . . 8 dom lastS = V
95, 8eleqtrrdi 2850 . . . . . . 7 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → 𝑤 ∈ dom lastS)
10 eldifsn 4717 . . . . . . . . 9 (𝑤 ∈ (𝑊 ∖ {∅}) ↔ (𝑤𝑊𝑤 ≠ ∅))
11 sseqval.3 . . . . . . . . . . . 12 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
12 inss1 4159 . . . . . . . . . . . 12 (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))) ⊆ Word 𝑆
1311, 12eqsstri 3951 . . . . . . . . . . 11 𝑊 ⊆ Word 𝑆
1413sseli 3913 . . . . . . . . . 10 (𝑤𝑊𝑤 ∈ Word 𝑆)
15 lswcl 14199 . . . . . . . . . 10 ((𝑤 ∈ Word 𝑆𝑤 ≠ ∅) → (lastS‘𝑤) ∈ 𝑆)
1614, 15sylan 579 . . . . . . . . 9 ((𝑤𝑊𝑤 ≠ ∅) → (lastS‘𝑤) ∈ 𝑆)
1710, 16sylbi 216 . . . . . . . 8 (𝑤 ∈ (𝑊 ∖ {∅}) → (lastS‘𝑤) ∈ 𝑆)
1817adantl 481 . . . . . . 7 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → (lastS‘𝑤) ∈ 𝑆)
199, 18jca 511 . . . . . 6 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → (𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆))
2019ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆))
216, 7fnmpti 6560 . . . . . 6 lastS Fn V
22 fnfun 6517 . . . . . 6 (lastS Fn V → Fun lastS)
23 ffvresb 6980 . . . . . 6 (Fun lastS → ((lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ↔ ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆)))
2421, 22, 23mp2b 10 . . . . 5 ((lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ↔ ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆))
2520, 24sylibr 233 . . . 4 (𝜑 → (lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆)
26 eqid 2738 . . . . 5 (ℤ‘(♯‘𝑀)) = (ℤ‘(♯‘𝑀))
27 lencl 14164 . . . . . . 7 (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0)
2827nn0zd 12353 . . . . . 6 (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℤ)
291, 28syl 17 . . . . 5 (𝜑 → (♯‘𝑀) ∈ ℤ)
30 ovex 7288 . . . . . . 7 (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V
31 simpr 484 . . . . . . . . 9 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → 𝑎 ∈ (ℤ‘(♯‘𝑀)))
321, 27syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝑀) ∈ ℕ0)
3332adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (♯‘𝑀) ∈ ℕ0)
34 elnn0uz 12552 . . . . . . . . . 10 ((♯‘𝑀) ∈ ℕ0 ↔ (♯‘𝑀) ∈ (ℤ‘0))
3533, 34sylib 217 . . . . . . . . 9 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (♯‘𝑀) ∈ (ℤ‘0))
36 uztrn 12529 . . . . . . . . 9 ((𝑎 ∈ (ℤ‘(♯‘𝑀)) ∧ (♯‘𝑀) ∈ (ℤ‘0)) → 𝑎 ∈ (ℤ‘0))
3731, 35, 36syl2anc 583 . . . . . . . 8 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → 𝑎 ∈ (ℤ‘0))
38 nn0uz 12549 . . . . . . . 8 0 = (ℤ‘0)
3937, 38eleqtrrdi 2850 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → 𝑎 ∈ ℕ0)
40 fvconst2g 7059 . . . . . . 7 (((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ 𝑎 ∈ ℕ0) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
4130, 39, 40sylancr 586 . . . . . 6 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
42 sseqval.4 . . . . . . . . . . . . 13 (𝜑𝐹:𝑊𝑆)
43 sseqval.1 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
4443, 1, 11, 42sseqmw 32258 . . . . . . . . . . . . 13 (𝜑𝑀𝑊)
4542, 44ffvelrnd 6944 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑀) ∈ 𝑆)
4645s1cld 14236 . . . . . . . . . . 11 (𝜑 → ⟨“(𝐹𝑀)”⟩ ∈ Word 𝑆)
47 ccatcl 14205 . . . . . . . . . . 11 ((𝑀 ∈ Word 𝑆 ∧ ⟨“(𝐹𝑀)”⟩ ∈ Word 𝑆) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ Word 𝑆)
481, 46, 47syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ Word 𝑆)
4930a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V)
50 ccatws1len 14253 . . . . . . . . . . . . 13 (𝑀 ∈ Word 𝑆 → (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) = ((♯‘𝑀) + 1))
511, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) = ((♯‘𝑀) + 1))
52 uzid 12526 . . . . . . . . . . . . 13 ((♯‘𝑀) ∈ ℤ → (♯‘𝑀) ∈ (ℤ‘(♯‘𝑀)))
53 peano2uz 12570 . . . . . . . . . . . . 13 ((♯‘𝑀) ∈ (ℤ‘(♯‘𝑀)) → ((♯‘𝑀) + 1) ∈ (ℤ‘(♯‘𝑀)))
5429, 52, 533syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑀) + 1) ∈ (ℤ‘(♯‘𝑀)))
5551, 54eqeltrd 2839 . . . . . . . . . . 11 (𝜑 → (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(♯‘𝑀)))
56 hashf 13980 . . . . . . . . . . . 12 ♯:V⟶(ℕ0 ∪ {+∞})
57 ffn 6584 . . . . . . . . . . . 12 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
58 elpreima 6917 . . . . . . . . . . . 12 (♯ Fn V → ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(♯‘𝑀)))))
5956, 57, 58mp2b 10 . . . . . . . . . . 11 ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(♯‘𝑀))))
6049, 55, 59sylanbrc 582 . . . . . . . . . 10 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))))
6148, 60elind 4124 . . . . . . . . 9 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))))
6261, 11eleqtrrdi 2850 . . . . . . . 8 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊)
6362adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊)
64 ccatws1n0 14270 . . . . . . . . 9 (𝑀 ∈ Word 𝑆 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅)
651, 64syl 17 . . . . . . . 8 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅)
6665adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅)
67 eldifsn 4717 . . . . . . 7 ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (𝑊 ∖ {∅}) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊 ∧ (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅))
6863, 66, 67sylanbrc 582 . . . . . 6 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (𝑊 ∖ {∅}))
6941, 68eqeltrd 2839 . . . . 5 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) ∈ (𝑊 ∖ {∅}))
70 eqidd 2739 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)))
71 simprl 767 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → 𝑥 = 𝑎)
7271fveq2d 6760 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → (𝐹𝑥) = (𝐹𝑎))
7372s1eqd 14234 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ⟨“(𝐹𝑥)”⟩ = ⟨“(𝐹𝑎)”⟩)
7471, 73oveq12d 7273 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → (𝑥 ++ ⟨“(𝐹𝑥)”⟩) = (𝑎 ++ ⟨“(𝐹𝑎)”⟩))
75 vex 3426 . . . . . . . 8 𝑎 ∈ V
7675a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ V)
77 vex 3426 . . . . . . . 8 𝑏 ∈ V
7877a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑏 ∈ V)
79 ovex 7288 . . . . . . . 8 (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V
8079a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V)
8170, 74, 76, 78, 80ovmpod 7403 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩))𝑏) = (𝑎 ++ ⟨“(𝐹𝑎)”⟩))
82 eldifi 4057 . . . . . . . . . . . 12 (𝑎 ∈ (𝑊 ∖ {∅}) → 𝑎𝑊)
8382ad2antrl 724 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎𝑊)
8413, 83sselid 3915 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ Word 𝑆)
8542adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝐹:𝑊𝑆)
8685, 83ffvelrnd 6944 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝐹𝑎) ∈ 𝑆)
8786s1cld 14236 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → ⟨“(𝐹𝑎)”⟩ ∈ Word 𝑆)
88 ccatcl 14205 . . . . . . . . . 10 ((𝑎 ∈ Word 𝑆 ∧ ⟨“(𝐹𝑎)”⟩ ∈ Word 𝑆) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ Word 𝑆)
8984, 87, 88syl2anc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ Word 𝑆)
9013, 82sselid 3915 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑊 ∖ {∅}) → 𝑎 ∈ Word 𝑆)
9190ad2antrl 724 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ Word 𝑆)
92 ccatws1len 14253 . . . . . . . . . . . 12 (𝑎 ∈ Word 𝑆 → (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) = ((♯‘𝑎) + 1))
9391, 92syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) = ((♯‘𝑎) + 1))
9483, 11eleqtrdi 2849 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))))
9594elin2d 4129 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ (♯ “ (ℤ‘(♯‘𝑀))))
96 elpreima 6917 . . . . . . . . . . . . . 14 (♯ Fn V → (𝑎 ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ (𝑎 ∈ V ∧ (♯‘𝑎) ∈ (ℤ‘(♯‘𝑀)))))
9756, 57, 96mp2b 10 . . . . . . . . . . . . 13 (𝑎 ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ (𝑎 ∈ V ∧ (♯‘𝑎) ∈ (ℤ‘(♯‘𝑀))))
9895, 97sylib 217 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ∈ V ∧ (♯‘𝑎) ∈ (ℤ‘(♯‘𝑀))))
99 peano2uz 12570 . . . . . . . . . . . 12 ((♯‘𝑎) ∈ (ℤ‘(♯‘𝑀)) → ((♯‘𝑎) + 1) ∈ (ℤ‘(♯‘𝑀)))
10098, 99simpl2im 503 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → ((♯‘𝑎) + 1) ∈ (ℤ‘(♯‘𝑀)))
10193, 100eqeltrd 2839 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(♯‘𝑀)))
102 elpreima 6917 . . . . . . . . . . 11 (♯ Fn V → ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V ∧ (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(♯‘𝑀)))))
10356, 57, 102mp2b 10 . . . . . . . . . 10 ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V ∧ (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(♯‘𝑀))))
10480, 101, 103sylanbrc 582 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))))
10589, 104elind 4124 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))))
106105, 11eleqtrrdi 2850 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ 𝑊)
107 ccatws1n0 14270 . . . . . . . 8 (𝑎 ∈ Word 𝑆 → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅)
10891, 107syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅)
109 eldifsn 4717 . . . . . . 7 ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (𝑊 ∖ {∅}) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ 𝑊 ∧ (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅))
110106, 108, 109sylanbrc 582 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (𝑊 ∖ {∅}))
11181, 110eqeltrd 2839 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩))𝑏) ∈ (𝑊 ∖ {∅}))
11226, 29, 69, 111seqf 13672 . . . 4 (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})):(ℤ‘(♯‘𝑀))⟶(𝑊 ∖ {∅}))
113 fco2 6611 . . . 4 (((lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})):(ℤ‘(♯‘𝑀))⟶(𝑊 ∖ {∅})) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(♯‘𝑀))⟶𝑆)
11425, 112, 113syl2anc 583 . . 3 (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(♯‘𝑀))⟶𝑆)
115 fzouzdisj 13351 . . . 4 ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅
116115a1i 11 . . 3 (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅)
117 fun 6620 . . 3 (((𝑀:(0..^(♯‘𝑀))⟶𝑆 ∧ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(♯‘𝑀))⟶𝑆) ∧ ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅) → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀)))⟶(𝑆𝑆))
1183, 114, 116, 117syl21anc 834 . 2 (𝜑 → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀)))⟶(𝑆𝑆))
11943, 1, 11, 42sseqval 32255 . . 3 (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
120 fzouzsplit 13350 . . . . . 6 ((♯‘𝑀) ∈ (ℤ‘0) → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
12134, 120sylbi 216 . . . . 5 ((♯‘𝑀) ∈ ℕ0 → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
1221, 27, 1213syl 18 . . . 4 (𝜑 → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
12338, 122syl5eq 2791 . . 3 (𝜑 → ℕ0 = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
124 unidm 4082 . . . . 5 (𝑆𝑆) = 𝑆
125124a1i 11 . . . 4 (𝜑 → (𝑆𝑆) = 𝑆)
126125eqcomd 2744 . . 3 (𝜑𝑆 = (𝑆𝑆))
127119, 123, 126feq123d 6573 . 2 (𝜑 → ((𝑀seqstr𝐹):ℕ0𝑆 ↔ (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀)))⟶(𝑆𝑆)))
128118, 127mpbird 256 1 (𝜑 → (𝑀seqstr𝐹):ℕ0𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cdif 3880  cun 3881  cin 3882  c0 4253  {csn 4558   × cxp 5578  ccnv 5579  dom cdm 5580  cres 5582  cima 5583  ccom 5584  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937  cmin 11135  0cn0 12163  cz 12249  cuz 12511  ..^cfzo 13311  seqcseq 13649  chash 13972  Word cword 14145  lastSclsw 14193   ++ cconcat 14201  ⟨“cs1 14228  seqstrcsseq 32250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-sseq 32251
This theorem is referenced by:  sseqp1  32262  fibp1  32268
  Copyright terms: Public domain W3C validator