Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqf Structured version   Visualization version   GIF version

Theorem sseqf 34426
Description: A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.) (Proof shortened by AV, 7-Mar-2022.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
Assertion
Ref Expression
sseqf (𝜑 → (𝑀seqstr𝐹):ℕ0𝑆)

Proof of Theorem sseqf
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqval.2 . . . 4 (𝜑𝑀 ∈ Word 𝑆)
2 wrdf 14427 . . . 4 (𝑀 ∈ Word 𝑆𝑀:(0..^(♯‘𝑀))⟶𝑆)
31, 2syl 17 . . 3 (𝜑𝑀:(0..^(♯‘𝑀))⟶𝑆)
4 vex 3441 . . . . . . . . 9 𝑤 ∈ V
54a1i 11 . . . . . . . 8 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → 𝑤 ∈ V)
6 fvex 6841 . . . . . . . . 9 (𝑥‘((♯‘𝑥) − 1)) ∈ V
7 df-lsw 14472 . . . . . . . . 9 lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1)))
86, 7dmmpti 6630 . . . . . . . 8 dom lastS = V
95, 8eleqtrrdi 2844 . . . . . . 7 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → 𝑤 ∈ dom lastS)
10 eldifsn 4737 . . . . . . . . 9 (𝑤 ∈ (𝑊 ∖ {∅}) ↔ (𝑤𝑊𝑤 ≠ ∅))
11 sseqval.3 . . . . . . . . . . . 12 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
12 inss1 4186 . . . . . . . . . . . 12 (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))) ⊆ Word 𝑆
1311, 12eqsstri 3977 . . . . . . . . . . 11 𝑊 ⊆ Word 𝑆
1413sseli 3926 . . . . . . . . . 10 (𝑤𝑊𝑤 ∈ Word 𝑆)
15 lswcl 14477 . . . . . . . . . 10 ((𝑤 ∈ Word 𝑆𝑤 ≠ ∅) → (lastS‘𝑤) ∈ 𝑆)
1614, 15sylan 580 . . . . . . . . 9 ((𝑤𝑊𝑤 ≠ ∅) → (lastS‘𝑤) ∈ 𝑆)
1710, 16sylbi 217 . . . . . . . 8 (𝑤 ∈ (𝑊 ∖ {∅}) → (lastS‘𝑤) ∈ 𝑆)
1817adantl 481 . . . . . . 7 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → (lastS‘𝑤) ∈ 𝑆)
199, 18jca 511 . . . . . 6 ((𝜑𝑤 ∈ (𝑊 ∖ {∅})) → (𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆))
2019ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆))
216, 7fnmpti 6629 . . . . . 6 lastS Fn V
22 fnfun 6586 . . . . . 6 (lastS Fn V → Fun lastS)
23 ffvresb 7064 . . . . . 6 (Fun lastS → ((lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ↔ ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆)))
2421, 22, 23mp2b 10 . . . . 5 ((lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ↔ ∀𝑤 ∈ (𝑊 ∖ {∅})(𝑤 ∈ dom lastS ∧ (lastS‘𝑤) ∈ 𝑆))
2520, 24sylibr 234 . . . 4 (𝜑 → (lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆)
26 eqid 2733 . . . . 5 (ℤ‘(♯‘𝑀)) = (ℤ‘(♯‘𝑀))
27 lencl 14442 . . . . . . 7 (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0)
2827nn0zd 12500 . . . . . 6 (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℤ)
291, 28syl 17 . . . . 5 (𝜑 → (♯‘𝑀) ∈ ℤ)
30 ovex 7385 . . . . . . 7 (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V
31 simpr 484 . . . . . . . . 9 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → 𝑎 ∈ (ℤ‘(♯‘𝑀)))
321, 27syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝑀) ∈ ℕ0)
3332adantr 480 . . . . . . . . . 10 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (♯‘𝑀) ∈ ℕ0)
34 elnn0uz 12779 . . . . . . . . . 10 ((♯‘𝑀) ∈ ℕ0 ↔ (♯‘𝑀) ∈ (ℤ‘0))
3533, 34sylib 218 . . . . . . . . 9 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (♯‘𝑀) ∈ (ℤ‘0))
36 uztrn 12756 . . . . . . . . 9 ((𝑎 ∈ (ℤ‘(♯‘𝑀)) ∧ (♯‘𝑀) ∈ (ℤ‘0)) → 𝑎 ∈ (ℤ‘0))
3731, 35, 36syl2anc 584 . . . . . . . 8 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → 𝑎 ∈ (ℤ‘0))
38 nn0uz 12776 . . . . . . . 8 0 = (ℤ‘0)
3937, 38eleqtrrdi 2844 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → 𝑎 ∈ ℕ0)
40 fvconst2g 7142 . . . . . . 7 (((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ 𝑎 ∈ ℕ0) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
4130, 39, 40sylancr 587 . . . . . 6 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
42 sseqval.4 . . . . . . . . . . . . 13 (𝜑𝐹:𝑊𝑆)
43 sseqval.1 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
4443, 1, 11, 42sseqmw 34425 . . . . . . . . . . . . 13 (𝜑𝑀𝑊)
4542, 44ffvelcdmd 7024 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑀) ∈ 𝑆)
4645s1cld 14513 . . . . . . . . . . 11 (𝜑 → ⟨“(𝐹𝑀)”⟩ ∈ Word 𝑆)
47 ccatcl 14483 . . . . . . . . . . 11 ((𝑀 ∈ Word 𝑆 ∧ ⟨“(𝐹𝑀)”⟩ ∈ Word 𝑆) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ Word 𝑆)
481, 46, 47syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ Word 𝑆)
4930a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V)
50 ccatws1len 14530 . . . . . . . . . . . . 13 (𝑀 ∈ Word 𝑆 → (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) = ((♯‘𝑀) + 1))
511, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) = ((♯‘𝑀) + 1))
52 uzid 12753 . . . . . . . . . . . . 13 ((♯‘𝑀) ∈ ℤ → (♯‘𝑀) ∈ (ℤ‘(♯‘𝑀)))
53 peano2uz 12801 . . . . . . . . . . . . 13 ((♯‘𝑀) ∈ (ℤ‘(♯‘𝑀)) → ((♯‘𝑀) + 1) ∈ (ℤ‘(♯‘𝑀)))
5429, 52, 533syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑀) + 1) ∈ (ℤ‘(♯‘𝑀)))
5551, 54eqeltrd 2833 . . . . . . . . . . 11 (𝜑 → (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(♯‘𝑀)))
56 hashf 14247 . . . . . . . . . . . 12 ♯:V⟶(ℕ0 ∪ {+∞})
57 ffn 6656 . . . . . . . . . . . 12 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
58 elpreima 6997 . . . . . . . . . . . 12 (♯ Fn V → ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(♯‘𝑀)))))
5956, 57, 58mp2b 10 . . . . . . . . . . 11 ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ (♯‘(𝑀 ++ ⟨“(𝐹𝑀)”⟩)) ∈ (ℤ‘(♯‘𝑀))))
6049, 55, 59sylanbrc 583 . . . . . . . . . 10 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))))
6148, 60elind 4149 . . . . . . . . 9 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))))
6261, 11eleqtrrdi 2844 . . . . . . . 8 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊)
6362adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊)
64 ccatws1n0 14542 . . . . . . . . 9 (𝑀 ∈ Word 𝑆 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅)
651, 64syl 17 . . . . . . . 8 (𝜑 → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅)
6665adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅)
67 eldifsn 4737 . . . . . . 7 ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (𝑊 ∖ {∅}) ↔ ((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ 𝑊 ∧ (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ≠ ∅))
6863, 66, 67sylanbrc 583 . . . . . 6 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ (𝑊 ∖ {∅}))
6941, 68eqeltrd 2833 . . . . 5 ((𝜑𝑎 ∈ (ℤ‘(♯‘𝑀))) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘𝑎) ∈ (𝑊 ∖ {∅}))
70 eqidd 2734 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)))
71 simprl 770 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → 𝑥 = 𝑎)
7271fveq2d 6832 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → (𝐹𝑥) = (𝐹𝑎))
7372s1eqd 14511 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ⟨“(𝐹𝑥)”⟩ = ⟨“(𝐹𝑎)”⟩)
7471, 73oveq12d 7370 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → (𝑥 ++ ⟨“(𝐹𝑥)”⟩) = (𝑎 ++ ⟨“(𝐹𝑎)”⟩))
75 vex 3441 . . . . . . . 8 𝑎 ∈ V
7675a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ V)
77 vex 3441 . . . . . . . 8 𝑏 ∈ V
7877a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑏 ∈ V)
79 ovex 7385 . . . . . . . 8 (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V
8079a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V)
8170, 74, 76, 78, 80ovmpod 7504 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩))𝑏) = (𝑎 ++ ⟨“(𝐹𝑎)”⟩))
82 eldifi 4080 . . . . . . . . . . . 12 (𝑎 ∈ (𝑊 ∖ {∅}) → 𝑎𝑊)
8382ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎𝑊)
8413, 83sselid 3928 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ Word 𝑆)
8542adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝐹:𝑊𝑆)
8685, 83ffvelcdmd 7024 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝐹𝑎) ∈ 𝑆)
8786s1cld 14513 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → ⟨“(𝐹𝑎)”⟩ ∈ Word 𝑆)
88 ccatcl 14483 . . . . . . . . . 10 ((𝑎 ∈ Word 𝑆 ∧ ⟨“(𝐹𝑎)”⟩ ∈ Word 𝑆) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ Word 𝑆)
8984, 87, 88syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ Word 𝑆)
9013, 82sselid 3928 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑊 ∖ {∅}) → 𝑎 ∈ Word 𝑆)
9190ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ Word 𝑆)
92 ccatws1len 14530 . . . . . . . . . . . 12 (𝑎 ∈ Word 𝑆 → (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) = ((♯‘𝑎) + 1))
9391, 92syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) = ((♯‘𝑎) + 1))
9483, 11eleqtrdi 2843 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))))
9594elin2d 4154 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → 𝑎 ∈ (♯ “ (ℤ‘(♯‘𝑀))))
96 elpreima 6997 . . . . . . . . . . . . . 14 (♯ Fn V → (𝑎 ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ (𝑎 ∈ V ∧ (♯‘𝑎) ∈ (ℤ‘(♯‘𝑀)))))
9756, 57, 96mp2b 10 . . . . . . . . . . . . 13 (𝑎 ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ (𝑎 ∈ V ∧ (♯‘𝑎) ∈ (ℤ‘(♯‘𝑀))))
9895, 97sylib 218 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ∈ V ∧ (♯‘𝑎) ∈ (ℤ‘(♯‘𝑀))))
99 peano2uz 12801 . . . . . . . . . . . 12 ((♯‘𝑎) ∈ (ℤ‘(♯‘𝑀)) → ((♯‘𝑎) + 1) ∈ (ℤ‘(♯‘𝑀)))
10098, 99simpl2im 503 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → ((♯‘𝑎) + 1) ∈ (ℤ‘(♯‘𝑀)))
10193, 100eqeltrd 2833 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(♯‘𝑀)))
102 elpreima 6997 . . . . . . . . . . 11 (♯ Fn V → ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V ∧ (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(♯‘𝑀)))))
10356, 57, 102mp2b 10 . . . . . . . . . 10 ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ V ∧ (♯‘(𝑎 ++ ⟨“(𝐹𝑎)”⟩)) ∈ (ℤ‘(♯‘𝑀))))
10480, 101, 103sylanbrc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (♯ “ (ℤ‘(♯‘𝑀))))
10589, 104elind 4149 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))))
106105, 11eleqtrrdi 2844 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ 𝑊)
107 ccatws1n0 14542 . . . . . . . 8 (𝑎 ∈ Word 𝑆 → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅)
10891, 107syl 17 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅)
109 eldifsn 4737 . . . . . . 7 ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (𝑊 ∖ {∅}) ↔ ((𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ 𝑊 ∧ (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ≠ ∅))
110106, 108, 109sylanbrc 583 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) ∈ (𝑊 ∖ {∅}))
11181, 110eqeltrd 2833 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (𝑊 ∖ {∅}) ∧ 𝑏 ∈ (𝑊 ∖ {∅}))) → (𝑎(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩))𝑏) ∈ (𝑊 ∖ {∅}))
11226, 29, 69, 111seqf 13932 . . . 4 (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})):(ℤ‘(♯‘𝑀))⟶(𝑊 ∖ {∅}))
113 fco2 6682 . . . 4 (((lastS ↾ (𝑊 ∖ {∅})):(𝑊 ∖ {∅})⟶𝑆 ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})):(ℤ‘(♯‘𝑀))⟶(𝑊 ∖ {∅})) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(♯‘𝑀))⟶𝑆)
11425, 112, 113syl2anc 584 . . 3 (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(♯‘𝑀))⟶𝑆)
115 fzouzdisj 13597 . . . 4 ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅
116115a1i 11 . . 3 (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅)
117 fun 6690 . . 3 (((𝑀:(0..^(♯‘𝑀))⟶𝑆 ∧ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))):(ℤ‘(♯‘𝑀))⟶𝑆) ∧ ((0..^(♯‘𝑀)) ∩ (ℤ‘(♯‘𝑀))) = ∅) → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀)))⟶(𝑆𝑆))
1183, 114, 116, 117syl21anc 837 . 2 (𝜑 → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀)))⟶(𝑆𝑆))
11943, 1, 11, 42sseqval 34422 . . 3 (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
120 fzouzsplit 13596 . . . . . 6 ((♯‘𝑀) ∈ (ℤ‘0) → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
12134, 120sylbi 217 . . . . 5 ((♯‘𝑀) ∈ ℕ0 → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
1221, 27, 1213syl 18 . . . 4 (𝜑 → (ℤ‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
12338, 122eqtrid 2780 . . 3 (𝜑 → ℕ0 = ((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀))))
124 unidm 4106 . . . . 5 (𝑆𝑆) = 𝑆
125124a1i 11 . . . 4 (𝜑 → (𝑆𝑆) = 𝑆)
126125eqcomd 2739 . . 3 (𝜑𝑆 = (𝑆𝑆))
127119, 123, 126feq123d 6645 . 2 (𝜑 → ((𝑀seqstr𝐹):ℕ0𝑆 ↔ (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))):((0..^(♯‘𝑀)) ∪ (ℤ‘(♯‘𝑀)))⟶(𝑆𝑆)))
128118, 127mpbird 257 1 (𝜑 → (𝑀seqstr𝐹):ℕ0𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  Vcvv 3437  cdif 3895  cun 3896  cin 3897  c0 4282  {csn 4575   × cxp 5617  ccnv 5618  dom cdm 5619  cres 5621  cima 5622  ccom 5623  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  cmpo 7354  0cc0 11013  1c1 11014   + caddc 11016  +∞cpnf 11150  cmin 11351  0cn0 12388  cz 12475  cuz 12738  ..^cfzo 13556  seqcseq 13910  chash 14239  Word cword 14422  lastSclsw 14471   ++ cconcat 14479  ⟨“cs1 14505  seqstrcsseq 34417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-word 14423  df-lsw 14472  df-concat 14480  df-s1 14506  df-sseq 34418
This theorem is referenced by:  sseqp1  34429  fibp1  34435
  Copyright terms: Public domain W3C validator