|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > s1cl | Structured version Visualization version GIF version | ||
| Description: A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.) | 
| Ref | Expression | 
|---|---|
| s1cl | ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 ∈ Word 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | s1val 14637 | . 2 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
| 2 | snopiswrd 14562 | . 2 ⊢ (𝐴 ∈ 𝐵 → {〈0, 𝐴〉} ∈ Word 𝐵) | |
| 3 | 1, 2 | eqeltrd 2840 | 1 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 ∈ Word 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2107 {csn 4625 〈cop 4631 0cc0 11156 Word cword 14553 〈“cs1 14634 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-word 14554 df-s1 14635 | 
| This theorem is referenced by: s1cld 14642 s1cli 14644 lsws1 14650 wrdl1s1 14653 ccatws1cl 14655 ccat2s1cl 14657 ccats1alpha 14658 ccats1val2 14666 lswccats1 14673 cats1un 14760 reuccatpfxs1 14786 s2prop 14947 s2eq2s1eq 14976 s3eqs2s1eq 14978 gsumws2 18856 gsumccatsn 18857 vrmdval 18871 vrmdf 18872 psgnpmtr 19529 efgsval2 19752 wwlksnext 29914 wwlksnextbi 29915 wwlksnextsurj 29921 rusgrnumwwlkb0 29992 loopclwwlkn1b 30062 clwwlkn1loopb 30063 clwwlkext2edg 30076 wwlksext2clwwlk 30077 clwwlknon1loop 30118 1ewlk 30135 1wlkdlem3 30159 numclwwlk2lem1lem 30362 numclwwlk1lem2foalem 30371 numclwwlk1lem2fo 30378 signstf0 34584 signstfvn 34585 signstfvp 34587 signstfvneq0 34588 signstfvc 34590 signsvf1 34597 signsvfn 34598 signshf 34604 upwordsing 46904 | 
| Copyright terms: Public domain | W3C validator |