MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1cl Structured version   Visualization version   GIF version

Theorem s1cl 14548
Description: A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.)
Assertion
Ref Expression
s1cl (𝐴𝐵 → ⟨“𝐴”⟩ ∈ Word 𝐵)

Proof of Theorem s1cl
StepHypRef Expression
1 s1val 14544 . 2 (𝐴𝐵 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
2 snopiswrd 14469 . 2 (𝐴𝐵 → {⟨0, 𝐴⟩} ∈ Word 𝐵)
31, 2eqeltrd 2833 1 (𝐴𝐵 → ⟨“𝐴”⟩ ∈ Word 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  {csn 4627  cop 4633  0cc0 11106  Word cword 14460  ⟨“cs1 14541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-word 14461  df-s1 14542
This theorem is referenced by:  s1cld  14549  s1cli  14551  lsws1  14557  wrdl1s1  14560  ccatws1cl  14562  ccat2s1cl  14564  ccats1alpha  14565  ccats1val2  14573  lswccats1  14580  cats1un  14667  reuccatpfxs1  14693  s2prop  14854  s2eq2s1eq  14883  s3eqs2s1eq  14885  gsumws2  18719  gsumccatsn  18720  vrmdval  18734  vrmdf  18735  psgnpmtr  19372  efgsval2  19595  wwlksnext  29136  wwlksnextbi  29137  wwlksnextsurj  29143  rusgrnumwwlkb0  29214  loopclwwlkn1b  29284  clwwlkn1loopb  29285  clwwlkext2edg  29298  wwlksext2clwwlk  29299  clwwlknon1loop  29340  1ewlk  29357  1wlkdlem3  29381  numclwwlk2lem1lem  29584  numclwwlk1lem2foalem  29593  numclwwlk1lem2fo  29600  signstf0  33567  signstfvn  33568  signstfvp  33570  signstfvneq0  33571  signstfvc  33573  signsvf1  33580  signsvfn  33581  signshf  33587  upwordsing  45584
  Copyright terms: Public domain W3C validator