MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1cl Structured version   Visualization version   GIF version

Theorem s1cl 14637
Description: A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.)
Assertion
Ref Expression
s1cl (𝐴𝐵 → ⟨“𝐴”⟩ ∈ Word 𝐵)

Proof of Theorem s1cl
StepHypRef Expression
1 s1val 14633 . 2 (𝐴𝐵 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
2 snopiswrd 14558 . 2 (𝐴𝐵 → {⟨0, 𝐴⟩} ∈ Word 𝐵)
31, 2eqeltrd 2839 1 (𝐴𝐵 → ⟨“𝐴”⟩ ∈ Word 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  {csn 4631  cop 4637  0cc0 11153  Word cword 14549  ⟨“cs1 14630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-word 14550  df-s1 14631
This theorem is referenced by:  s1cld  14638  s1cli  14640  lsws1  14646  wrdl1s1  14649  ccatws1cl  14651  ccat2s1cl  14653  ccats1alpha  14654  ccats1val2  14662  lswccats1  14669  cats1un  14756  reuccatpfxs1  14782  s2prop  14943  s2eq2s1eq  14972  s3eqs2s1eq  14974  gsumws2  18868  gsumccatsn  18869  vrmdval  18883  vrmdf  18884  psgnpmtr  19543  efgsval2  19766  wwlksnext  29923  wwlksnextbi  29924  wwlksnextsurj  29930  rusgrnumwwlkb0  30001  loopclwwlkn1b  30071  clwwlkn1loopb  30072  clwwlkext2edg  30085  wwlksext2clwwlk  30086  clwwlknon1loop  30127  1ewlk  30144  1wlkdlem3  30168  numclwwlk2lem1lem  30371  numclwwlk1lem2foalem  30380  numclwwlk1lem2fo  30387  signstf0  34562  signstfvn  34563  signstfvp  34565  signstfvneq0  34566  signstfvc  34568  signsvf1  34575  signsvfn  34576  signshf  34582  upwordsing  46838
  Copyright terms: Public domain W3C validator