| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1cl | Structured version Visualization version GIF version | ||
| Description: A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.) |
| Ref | Expression |
|---|---|
| s1cl | ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 ∈ Word 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14563 | . 2 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
| 2 | snopiswrd 14488 | . 2 ⊢ (𝐴 ∈ 𝐵 → {〈0, 𝐴〉} ∈ Word 𝐵) | |
| 3 | 1, 2 | eqeltrd 2828 | 1 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 ∈ Word 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {csn 4589 〈cop 4595 0cc0 11068 Word cword 14478 〈“cs1 14560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-word 14479 df-s1 14561 |
| This theorem is referenced by: s1cld 14568 s1cli 14570 lsws1 14576 wrdl1s1 14579 ccatws1cl 14581 ccat2s1cl 14583 ccats1alpha 14584 ccats1val2 14592 lswccats1 14599 cats1un 14686 reuccatpfxs1 14712 s2prop 14873 s2eq2s1eq 14902 s3eqs2s1eq 14904 gsumws2 18769 gsumccatsn 18770 vrmdval 18784 vrmdf 18785 psgnpmtr 19440 efgsval2 19663 wwlksnext 29823 wwlksnextbi 29824 wwlksnextsurj 29830 rusgrnumwwlkb0 29901 loopclwwlkn1b 29971 clwwlkn1loopb 29972 clwwlkext2edg 29985 wwlksext2clwwlk 29986 clwwlknon1loop 30027 1ewlk 30044 1wlkdlem3 30068 numclwwlk2lem1lem 30271 numclwwlk1lem2foalem 30280 numclwwlk1lem2fo 30287 signstf0 34559 signstfvn 34560 signstfvp 34562 signstfvneq0 34563 signstfvc 34565 signsvf1 34572 signsvfn 34573 signshf 34579 upwordsing 46882 |
| Copyright terms: Public domain | W3C validator |