MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1cl Structured version   Visualization version   GIF version

Theorem s1cl 14625
Description: A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.)
Assertion
Ref Expression
s1cl (𝐴𝐵 → ⟨“𝐴”⟩ ∈ Word 𝐵)

Proof of Theorem s1cl
StepHypRef Expression
1 s1val 14621 . 2 (𝐴𝐵 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
2 snopiswrd 14546 . 2 (𝐴𝐵 → {⟨0, 𝐴⟩} ∈ Word 𝐵)
31, 2eqeltrd 2835 1 (𝐴𝐵 → ⟨“𝐴”⟩ ∈ Word 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {csn 4606  cop 4612  0cc0 11134  Word cword 14536  ⟨“cs1 14618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-word 14537  df-s1 14619
This theorem is referenced by:  s1cld  14626  s1cli  14628  lsws1  14634  wrdl1s1  14637  ccatws1cl  14639  ccat2s1cl  14641  ccats1alpha  14642  ccats1val2  14650  lswccats1  14657  cats1un  14744  reuccatpfxs1  14770  s2prop  14931  s2eq2s1eq  14960  s3eqs2s1eq  14962  gsumws2  18825  gsumccatsn  18826  vrmdval  18840  vrmdf  18841  psgnpmtr  19496  efgsval2  19719  wwlksnext  29880  wwlksnextbi  29881  wwlksnextsurj  29887  rusgrnumwwlkb0  29958  loopclwwlkn1b  30028  clwwlkn1loopb  30029  clwwlkext2edg  30042  wwlksext2clwwlk  30043  clwwlknon1loop  30084  1ewlk  30101  1wlkdlem3  30125  numclwwlk2lem1lem  30328  numclwwlk1lem2foalem  30337  numclwwlk1lem2fo  30344  signstf0  34605  signstfvn  34606  signstfvp  34608  signstfvneq0  34609  signstfvc  34611  signsvf1  34618  signsvfn  34619  signshf  34625  upwordsing  46880
  Copyright terms: Public domain W3C validator