MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccat1st1st Structured version   Visualization version   GIF version

Theorem ccat1st1st 14543
Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if 𝑊 is the empty word. (Contributed by AV, 26-Mar-2022.)
Assertion
Ref Expression
ccat1st1st (𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))

Proof of Theorem ccat1st1st
StepHypRef Expression
1 hasheq0 14277 . . . 4 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
21biimpa 476 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → 𝑊 = ∅)
3 s1cli 14520 . . . . . . 7 ⟨“∅”⟩ ∈ Word V
4 ccatlid 14501 . . . . . . 7 (⟨“∅”⟩ ∈ Word V → (∅ ++ ⟨“∅”⟩) = ⟨“∅”⟩)
53, 4ax-mp 5 . . . . . 6 (∅ ++ ⟨“∅”⟩) = ⟨“∅”⟩
65fveq1i 6832 . . . . 5 ((∅ ++ ⟨“∅”⟩)‘0) = (⟨“∅”⟩‘0)
7 0ex 5249 . . . . . 6 ∅ ∈ V
8 s1fv 14525 . . . . . 6 (∅ ∈ V → (⟨“∅”⟩‘0) = ∅)
97, 8ax-mp 5 . . . . 5 (⟨“∅”⟩‘0) = ∅
106, 9eqtri 2756 . . . 4 ((∅ ++ ⟨“∅”⟩)‘0) = ∅
11 id 22 . . . . . 6 (𝑊 = ∅ → 𝑊 = ∅)
12 fveq1 6830 . . . . . . . 8 (𝑊 = ∅ → (𝑊‘0) = (∅‘0))
13 0fv 6872 . . . . . . . 8 (∅‘0) = ∅
1412, 13eqtrdi 2784 . . . . . . 7 (𝑊 = ∅ → (𝑊‘0) = ∅)
1514s1eqd 14516 . . . . . 6 (𝑊 = ∅ → ⟨“(𝑊‘0)”⟩ = ⟨“∅”⟩)
1611, 15oveq12d 7373 . . . . 5 (𝑊 = ∅ → (𝑊 ++ ⟨“(𝑊‘0)”⟩) = (∅ ++ ⟨“∅”⟩))
1716fveq1d 6833 . . . 4 (𝑊 = ∅ → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = ((∅ ++ ⟨“∅”⟩)‘0))
1810, 17, 143eqtr4a 2794 . . 3 (𝑊 = ∅ → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
192, 18syl 17 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
201necon3bid 2973 . . . . . 6 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 ↔ 𝑊 ≠ ∅))
2120biimpa 476 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 𝑊 ≠ ∅)
22 lennncl 14448 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
2321, 22syldan 591 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℕ)
24 lbfzo0 13606 . . . 4 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
2523, 24sylibr 234 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 0 ∈ (0..^(♯‘𝑊)))
26 ccats1val1 14541 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
2725, 26syldan 591 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
2819, 27pm2.61dane 3016 1 (𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  c0 4282  cfv 6489  (class class class)co 7355  0cc0 11017  cn 12136  ..^cfzo 13561  chash 14244  Word cword 14427   ++ cconcat 14484  ⟨“cs1 14510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-hash 14245  df-word 14428  df-concat 14485  df-s1 14511
This theorem is referenced by:  clwwlknonwwlknonb  30107
  Copyright terms: Public domain W3C validator