| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccat1st1st | Structured version Visualization version GIF version | ||
| Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if 𝑊 is the empty word. (Contributed by AV, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| ccat1st1st | ⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hasheq0 14265 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) | |
| 2 | 1 | biimpa 476 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → 𝑊 = ∅) |
| 3 | s1cli 14508 | . . . . . . 7 ⊢ 〈“∅”〉 ∈ Word V | |
| 4 | ccatlid 14489 | . . . . . . 7 ⊢ (〈“∅”〉 ∈ Word V → (∅ ++ 〈“∅”〉) = 〈“∅”〉) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (∅ ++ 〈“∅”〉) = 〈“∅”〉 |
| 6 | 5 | fveq1i 6818 | . . . . 5 ⊢ ((∅ ++ 〈“∅”〉)‘0) = (〈“∅”〉‘0) |
| 7 | 0ex 5240 | . . . . . 6 ⊢ ∅ ∈ V | |
| 8 | s1fv 14513 | . . . . . 6 ⊢ (∅ ∈ V → (〈“∅”〉‘0) = ∅) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ (〈“∅”〉‘0) = ∅ |
| 10 | 6, 9 | eqtri 2754 | . . . 4 ⊢ ((∅ ++ 〈“∅”〉)‘0) = ∅ |
| 11 | id 22 | . . . . . 6 ⊢ (𝑊 = ∅ → 𝑊 = ∅) | |
| 12 | fveq1 6816 | . . . . . . . 8 ⊢ (𝑊 = ∅ → (𝑊‘0) = (∅‘0)) | |
| 13 | 0fv 6858 | . . . . . . . 8 ⊢ (∅‘0) = ∅ | |
| 14 | 12, 13 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝑊 = ∅ → (𝑊‘0) = ∅) |
| 15 | 14 | s1eqd 14504 | . . . . . 6 ⊢ (𝑊 = ∅ → 〈“(𝑊‘0)”〉 = 〈“∅”〉) |
| 16 | 11, 15 | oveq12d 7359 | . . . . 5 ⊢ (𝑊 = ∅ → (𝑊 ++ 〈“(𝑊‘0)”〉) = (∅ ++ 〈“∅”〉)) |
| 17 | 16 | fveq1d 6819 | . . . 4 ⊢ (𝑊 = ∅ → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = ((∅ ++ 〈“∅”〉)‘0)) |
| 18 | 10, 17, 14 | 3eqtr4a 2792 | . . 3 ⊢ (𝑊 = ∅ → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 19 | 2, 18 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 20 | 1 | necon3bid 2972 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 ↔ 𝑊 ≠ ∅)) |
| 21 | 20 | biimpa 476 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 𝑊 ≠ ∅) |
| 22 | lennncl 14436 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
| 23 | 21, 22 | syldan 591 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℕ) |
| 24 | lbfzo0 13594 | . . . 4 ⊢ (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ) | |
| 25 | 23, 24 | sylibr 234 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 0 ∈ (0..^(♯‘𝑊))) |
| 26 | ccats1val1 14529 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) | |
| 27 | 25, 26 | syldan 591 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 28 | 19, 27 | pm2.61dane 3015 | 1 ⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4278 ‘cfv 6476 (class class class)co 7341 0cc0 11001 ℕcn 12120 ..^cfzo 13549 ♯chash 14232 Word cword 14415 ++ cconcat 14472 〈“cs1 14498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-concat 14473 df-s1 14499 |
| This theorem is referenced by: clwwlknonwwlknonb 30078 |
| Copyright terms: Public domain | W3C validator |