Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccat1st1st Structured version   Visualization version   GIF version

Theorem ccat1st1st 13984
 Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if 𝑊 is the empty word. (Contributed by AV, 26-Mar-2022.)
Assertion
Ref Expression
ccat1st1st (𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))

Proof of Theorem ccat1st1st
StepHypRef Expression
1 hasheq0 13729 . . . 4 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
21biimpa 480 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → 𝑊 = ∅)
3 s1cli 13959 . . . . . . 7 ⟨“∅”⟩ ∈ Word V
4 ccatlid 13940 . . . . . . 7 (⟨“∅”⟩ ∈ Word V → (∅ ++ ⟨“∅”⟩) = ⟨“∅”⟩)
53, 4ax-mp 5 . . . . . 6 (∅ ++ ⟨“∅”⟩) = ⟨“∅”⟩
65fveq1i 6662 . . . . 5 ((∅ ++ ⟨“∅”⟩)‘0) = (⟨“∅”⟩‘0)
7 0ex 5197 . . . . . 6 ∅ ∈ V
8 s1fv 13964 . . . . . 6 (∅ ∈ V → (⟨“∅”⟩‘0) = ∅)
97, 8ax-mp 5 . . . . 5 (⟨“∅”⟩‘0) = ∅
106, 9eqtri 2847 . . . 4 ((∅ ++ ⟨“∅”⟩)‘0) = ∅
11 id 22 . . . . . 6 (𝑊 = ∅ → 𝑊 = ∅)
12 fveq1 6660 . . . . . . . 8 (𝑊 = ∅ → (𝑊‘0) = (∅‘0))
13 0fv 6700 . . . . . . . 8 (∅‘0) = ∅
1412, 13syl6eq 2875 . . . . . . 7 (𝑊 = ∅ → (𝑊‘0) = ∅)
1514s1eqd 13955 . . . . . 6 (𝑊 = ∅ → ⟨“(𝑊‘0)”⟩ = ⟨“∅”⟩)
1611, 15oveq12d 7167 . . . . 5 (𝑊 = ∅ → (𝑊 ++ ⟨“(𝑊‘0)”⟩) = (∅ ++ ⟨“∅”⟩))
1716fveq1d 6663 . . . 4 (𝑊 = ∅ → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = ((∅ ++ ⟨“∅”⟩)‘0))
1810, 17, 143eqtr4a 2885 . . 3 (𝑊 = ∅ → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
192, 18syl 17 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
201necon3bid 3058 . . . . . 6 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 ↔ 𝑊 ≠ ∅))
2120biimpa 480 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 𝑊 ≠ ∅)
22 lennncl 13886 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
2321, 22syldan 594 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℕ)
24 lbfzo0 13081 . . . 4 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
2523, 24sylibr 237 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 0 ∈ (0..^(♯‘𝑊)))
26 ccats1val1 13981 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
2725, 26syldan 594 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
2819, 27pm2.61dane 3101 1 (𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  Vcvv 3480  ∅c0 4276  ‘cfv 6343  (class class class)co 7149  0cc0 10535  ℕcn 11634  ..^cfzo 13037  ♯chash 13695  Word cword 13866   ++ cconcat 13922  ⟨“cs1 13949 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-hash 13696  df-word 13867  df-concat 13923  df-s1 13950 This theorem is referenced by:  clwwlknonwwlknonb  27897
 Copyright terms: Public domain W3C validator