| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccat1st1st | Structured version Visualization version GIF version | ||
| Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if 𝑊 is the empty word. (Contributed by AV, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| ccat1st1st | ⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hasheq0 14328 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) | |
| 2 | 1 | biimpa 476 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → 𝑊 = ∅) |
| 3 | s1cli 14570 | . . . . . . 7 ⊢ 〈“∅”〉 ∈ Word V | |
| 4 | ccatlid 14551 | . . . . . . 7 ⊢ (〈“∅”〉 ∈ Word V → (∅ ++ 〈“∅”〉) = 〈“∅”〉) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (∅ ++ 〈“∅”〉) = 〈“∅”〉 |
| 6 | 5 | fveq1i 6859 | . . . . 5 ⊢ ((∅ ++ 〈“∅”〉)‘0) = (〈“∅”〉‘0) |
| 7 | 0ex 5262 | . . . . . 6 ⊢ ∅ ∈ V | |
| 8 | s1fv 14575 | . . . . . 6 ⊢ (∅ ∈ V → (〈“∅”〉‘0) = ∅) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ (〈“∅”〉‘0) = ∅ |
| 10 | 6, 9 | eqtri 2752 | . . . 4 ⊢ ((∅ ++ 〈“∅”〉)‘0) = ∅ |
| 11 | id 22 | . . . . . 6 ⊢ (𝑊 = ∅ → 𝑊 = ∅) | |
| 12 | fveq1 6857 | . . . . . . . 8 ⊢ (𝑊 = ∅ → (𝑊‘0) = (∅‘0)) | |
| 13 | 0fv 6902 | . . . . . . . 8 ⊢ (∅‘0) = ∅ | |
| 14 | 12, 13 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝑊 = ∅ → (𝑊‘0) = ∅) |
| 15 | 14 | s1eqd 14566 | . . . . . 6 ⊢ (𝑊 = ∅ → 〈“(𝑊‘0)”〉 = 〈“∅”〉) |
| 16 | 11, 15 | oveq12d 7405 | . . . . 5 ⊢ (𝑊 = ∅ → (𝑊 ++ 〈“(𝑊‘0)”〉) = (∅ ++ 〈“∅”〉)) |
| 17 | 16 | fveq1d 6860 | . . . 4 ⊢ (𝑊 = ∅ → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = ((∅ ++ 〈“∅”〉)‘0)) |
| 18 | 10, 17, 14 | 3eqtr4a 2790 | . . 3 ⊢ (𝑊 = ∅ → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 19 | 2, 18 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 20 | 1 | necon3bid 2969 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 ↔ 𝑊 ≠ ∅)) |
| 21 | 20 | biimpa 476 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 𝑊 ≠ ∅) |
| 22 | lennncl 14499 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
| 23 | 21, 22 | syldan 591 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℕ) |
| 24 | lbfzo0 13660 | . . . 4 ⊢ (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ) | |
| 25 | 23, 24 | sylibr 234 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 0 ∈ (0..^(♯‘𝑊))) |
| 26 | ccats1val1 14591 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) | |
| 27 | 25, 26 | syldan 591 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 28 | 19, 27 | pm2.61dane 3012 | 1 ⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ℕcn 12186 ..^cfzo 13615 ♯chash 14295 Word cword 14478 ++ cconcat 14535 〈“cs1 14560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 |
| This theorem is referenced by: clwwlknonwwlknonb 30035 |
| Copyright terms: Public domain | W3C validator |