MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccat1st1st Structured version   Visualization version   GIF version

Theorem ccat1st1st 13975
Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if 𝑊 is the empty word. (Contributed by AV, 26-Mar-2022.)
Assertion
Ref Expression
ccat1st1st (𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))

Proof of Theorem ccat1st1st
StepHypRef Expression
1 hasheq0 13720 . . . 4 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
21biimpa 480 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → 𝑊 = ∅)
3 s1cli 13950 . . . . . . 7 ⟨“∅”⟩ ∈ Word V
4 ccatlid 13931 . . . . . . 7 (⟨“∅”⟩ ∈ Word V → (∅ ++ ⟨“∅”⟩) = ⟨“∅”⟩)
53, 4ax-mp 5 . . . . . 6 (∅ ++ ⟨“∅”⟩) = ⟨“∅”⟩
65fveq1i 6646 . . . . 5 ((∅ ++ ⟨“∅”⟩)‘0) = (⟨“∅”⟩‘0)
7 0ex 5175 . . . . . 6 ∅ ∈ V
8 s1fv 13955 . . . . . 6 (∅ ∈ V → (⟨“∅”⟩‘0) = ∅)
97, 8ax-mp 5 . . . . 5 (⟨“∅”⟩‘0) = ∅
106, 9eqtri 2821 . . . 4 ((∅ ++ ⟨“∅”⟩)‘0) = ∅
11 id 22 . . . . . 6 (𝑊 = ∅ → 𝑊 = ∅)
12 fveq1 6644 . . . . . . . 8 (𝑊 = ∅ → (𝑊‘0) = (∅‘0))
13 0fv 6684 . . . . . . . 8 (∅‘0) = ∅
1412, 13eqtrdi 2849 . . . . . . 7 (𝑊 = ∅ → (𝑊‘0) = ∅)
1514s1eqd 13946 . . . . . 6 (𝑊 = ∅ → ⟨“(𝑊‘0)”⟩ = ⟨“∅”⟩)
1611, 15oveq12d 7153 . . . . 5 (𝑊 = ∅ → (𝑊 ++ ⟨“(𝑊‘0)”⟩) = (∅ ++ ⟨“∅”⟩))
1716fveq1d 6647 . . . 4 (𝑊 = ∅ → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = ((∅ ++ ⟨“∅”⟩)‘0))
1810, 17, 143eqtr4a 2859 . . 3 (𝑊 = ∅ → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
192, 18syl 17 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
201necon3bid 3031 . . . . . 6 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 ↔ 𝑊 ≠ ∅))
2120biimpa 480 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 𝑊 ≠ ∅)
22 lennncl 13877 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
2321, 22syldan 594 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℕ)
24 lbfzo0 13072 . . . 4 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
2523, 24sylibr 237 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 0 ∈ (0..^(♯‘𝑊)))
26 ccats1val1 13972 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
2725, 26syldan 594 . 2 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
2819, 27pm2.61dane 3074 1 (𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  c0 4243  cfv 6324  (class class class)co 7135  0cc0 10526  cn 11625  ..^cfzo 13028  chash 13686  Word cword 13857   ++ cconcat 13913  ⟨“cs1 13940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941
This theorem is referenced by:  clwwlknonwwlknonb  27891
  Copyright terms: Public domain W3C validator