| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccat1st1st | Structured version Visualization version GIF version | ||
| Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if 𝑊 is the empty word. (Contributed by AV, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| ccat1st1st | ⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hasheq0 14277 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) | |
| 2 | 1 | biimpa 476 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → 𝑊 = ∅) |
| 3 | s1cli 14520 | . . . . . . 7 ⊢ 〈“∅”〉 ∈ Word V | |
| 4 | ccatlid 14501 | . . . . . . 7 ⊢ (〈“∅”〉 ∈ Word V → (∅ ++ 〈“∅”〉) = 〈“∅”〉) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (∅ ++ 〈“∅”〉) = 〈“∅”〉 |
| 6 | 5 | fveq1i 6832 | . . . . 5 ⊢ ((∅ ++ 〈“∅”〉)‘0) = (〈“∅”〉‘0) |
| 7 | 0ex 5249 | . . . . . 6 ⊢ ∅ ∈ V | |
| 8 | s1fv 14525 | . . . . . 6 ⊢ (∅ ∈ V → (〈“∅”〉‘0) = ∅) | |
| 9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ (〈“∅”〉‘0) = ∅ |
| 10 | 6, 9 | eqtri 2756 | . . . 4 ⊢ ((∅ ++ 〈“∅”〉)‘0) = ∅ |
| 11 | id 22 | . . . . . 6 ⊢ (𝑊 = ∅ → 𝑊 = ∅) | |
| 12 | fveq1 6830 | . . . . . . . 8 ⊢ (𝑊 = ∅ → (𝑊‘0) = (∅‘0)) | |
| 13 | 0fv 6872 | . . . . . . . 8 ⊢ (∅‘0) = ∅ | |
| 14 | 12, 13 | eqtrdi 2784 | . . . . . . 7 ⊢ (𝑊 = ∅ → (𝑊‘0) = ∅) |
| 15 | 14 | s1eqd 14516 | . . . . . 6 ⊢ (𝑊 = ∅ → 〈“(𝑊‘0)”〉 = 〈“∅”〉) |
| 16 | 11, 15 | oveq12d 7373 | . . . . 5 ⊢ (𝑊 = ∅ → (𝑊 ++ 〈“(𝑊‘0)”〉) = (∅ ++ 〈“∅”〉)) |
| 17 | 16 | fveq1d 6833 | . . . 4 ⊢ (𝑊 = ∅ → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = ((∅ ++ 〈“∅”〉)‘0)) |
| 18 | 10, 17, 14 | 3eqtr4a 2794 | . . 3 ⊢ (𝑊 = ∅ → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 19 | 2, 18 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 20 | 1 | necon3bid 2973 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 ↔ 𝑊 ≠ ∅)) |
| 21 | 20 | biimpa 476 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 𝑊 ≠ ∅) |
| 22 | lennncl 14448 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
| 23 | 21, 22 | syldan 591 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℕ) |
| 24 | lbfzo0 13606 | . . . 4 ⊢ (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ) | |
| 25 | 23, 24 | sylibr 234 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → 0 ∈ (0..^(♯‘𝑊))) |
| 26 | ccats1val1 14541 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) | |
| 27 | 25, 26 | syldan 591 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ≠ 0) → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| 28 | 19, 27 | pm2.61dane 3016 | 1 ⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∅c0 4282 ‘cfv 6489 (class class class)co 7355 0cc0 11017 ℕcn 12136 ..^cfzo 13561 ♯chash 14244 Word cword 14427 ++ cconcat 14484 〈“cs1 14510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-hash 14245 df-word 14428 df-concat 14485 df-s1 14511 |
| This theorem is referenced by: clwwlknonwwlknonb 30107 |
| Copyright terms: Public domain | W3C validator |