Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqp1 Structured version   Visualization version   GIF version

Theorem sseqp1 32262
Description: Value of the strong sequence builder function at a successor. (Contributed by Thierry Arnoux, 24-Apr-2019.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
sseqfv2.4 (𝜑𝑁 ∈ (ℤ‘(♯‘𝑀)))
Assertion
Ref Expression
sseqp1 (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁))))

Proof of Theorem sseqp1
Dummy variables 𝑥 𝑦 𝑎 𝑏 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseqval.1 . . 3 (𝜑𝑆 ∈ V)
2 sseqval.2 . . 3 (𝜑𝑀 ∈ Word 𝑆)
3 sseqval.3 . . 3 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
4 sseqval.4 . . 3 (𝜑𝐹:𝑊𝑆)
5 sseqfv2.4 . . 3 (𝜑𝑁 ∈ (ℤ‘(♯‘𝑀)))
61, 2, 3, 4, 5sseqfv2 32261 . 2 (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (lastS‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑁)))
7 fveq2 6756 . . . . . . 7 (𝑖 = (♯‘𝑀) → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑖) = (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(♯‘𝑀)))
8 oveq2 7263 . . . . . . . . 9 (𝑖 = (♯‘𝑀) → (0..^𝑖) = (0..^(♯‘𝑀)))
98reseq2d 5880 . . . . . . . 8 (𝑖 = (♯‘𝑀) → ((𝑀seqstr𝐹) ↾ (0..^𝑖)) = ((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))))
109fveq2d 6760 . . . . . . . . 9 (𝑖 = (♯‘𝑀) → (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖))) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀)))))
1110s1eqd 14234 . . . . . . . 8 (𝑖 = (♯‘𝑀) → ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩ = ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))))”⟩)
129, 11oveq12d 7273 . . . . . . 7 (𝑖 = (♯‘𝑀) → (((𝑀seqstr𝐹) ↾ (0..^𝑖)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩) = (((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))))”⟩))
137, 12eqeq12d 2754 . . . . . 6 (𝑖 = (♯‘𝑀) → ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑖) = (((𝑀seqstr𝐹) ↾ (0..^𝑖)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩) ↔ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(♯‘𝑀)) = (((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))))”⟩)))
1413imbi2d 340 . . . . 5 (𝑖 = (♯‘𝑀) → ((𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑖) = (((𝑀seqstr𝐹) ↾ (0..^𝑖)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩)) ↔ (𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(♯‘𝑀)) = (((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))))”⟩))))
15 fveq2 6756 . . . . . . 7 (𝑖 = 𝑛 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑖) = (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛))
16 oveq2 7263 . . . . . . . . 9 (𝑖 = 𝑛 → (0..^𝑖) = (0..^𝑛))
1716reseq2d 5880 . . . . . . . 8 (𝑖 = 𝑛 → ((𝑀seqstr𝐹) ↾ (0..^𝑖)) = ((𝑀seqstr𝐹) ↾ (0..^𝑛)))
1817fveq2d 6760 . . . . . . . . 9 (𝑖 = 𝑛 → (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖))) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛))))
1918s1eqd 14234 . . . . . . . 8 (𝑖 = 𝑛 → ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩ = ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)
2017, 19oveq12d 7273 . . . . . . 7 (𝑖 = 𝑛 → (((𝑀seqstr𝐹) ↾ (0..^𝑖)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩))
2115, 20eqeq12d 2754 . . . . . 6 (𝑖 = 𝑛 → ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑖) = (((𝑀seqstr𝐹) ↾ (0..^𝑖)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩) ↔ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)))
2221imbi2d 340 . . . . 5 (𝑖 = 𝑛 → ((𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑖) = (((𝑀seqstr𝐹) ↾ (0..^𝑖)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩)) ↔ (𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩))))
23 fveq2 6756 . . . . . . 7 (𝑖 = (𝑛 + 1) → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑖) = (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(𝑛 + 1)))
24 oveq2 7263 . . . . . . . . 9 (𝑖 = (𝑛 + 1) → (0..^𝑖) = (0..^(𝑛 + 1)))
2524reseq2d 5880 . . . . . . . 8 (𝑖 = (𝑛 + 1) → ((𝑀seqstr𝐹) ↾ (0..^𝑖)) = ((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))))
2625fveq2d 6760 . . . . . . . . 9 (𝑖 = (𝑛 + 1) → (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖))) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1)))))
2726s1eqd 14234 . . . . . . . 8 (𝑖 = (𝑛 + 1) → ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩ = ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))))”⟩)
2825, 27oveq12d 7273 . . . . . . 7 (𝑖 = (𝑛 + 1) → (((𝑀seqstr𝐹) ↾ (0..^𝑖)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩) = (((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))))”⟩))
2923, 28eqeq12d 2754 . . . . . 6 (𝑖 = (𝑛 + 1) → ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑖) = (((𝑀seqstr𝐹) ↾ (0..^𝑖)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩) ↔ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(𝑛 + 1)) = (((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))))”⟩)))
3029imbi2d 340 . . . . 5 (𝑖 = (𝑛 + 1) → ((𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑖) = (((𝑀seqstr𝐹) ↾ (0..^𝑖)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩)) ↔ (𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(𝑛 + 1)) = (((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))))”⟩))))
31 fveq2 6756 . . . . . . 7 (𝑖 = 𝑁 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑖) = (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑁))
32 oveq2 7263 . . . . . . . . 9 (𝑖 = 𝑁 → (0..^𝑖) = (0..^𝑁))
3332reseq2d 5880 . . . . . . . 8 (𝑖 = 𝑁 → ((𝑀seqstr𝐹) ↾ (0..^𝑖)) = ((𝑀seqstr𝐹) ↾ (0..^𝑁)))
3433fveq2d 6760 . . . . . . . . 9 (𝑖 = 𝑁 → (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖))) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁))))
3534s1eqd 14234 . . . . . . . 8 (𝑖 = 𝑁 → ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩ = ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁)))”⟩)
3633, 35oveq12d 7273 . . . . . . 7 (𝑖 = 𝑁 → (((𝑀seqstr𝐹) ↾ (0..^𝑖)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩) = (((𝑀seqstr𝐹) ↾ (0..^𝑁)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁)))”⟩))
3731, 36eqeq12d 2754 . . . . . 6 (𝑖 = 𝑁 → ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑖) = (((𝑀seqstr𝐹) ↾ (0..^𝑖)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩) ↔ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑁) = (((𝑀seqstr𝐹) ↾ (0..^𝑁)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁)))”⟩)))
3837imbi2d 340 . . . . 5 (𝑖 = 𝑁 → ((𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑖) = (((𝑀seqstr𝐹) ↾ (0..^𝑖)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑖)))”⟩)) ↔ (𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑁) = (((𝑀seqstr𝐹) ↾ (0..^𝑁)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁)))”⟩))))
39 ovex 7288 . . . . . . . 8 (𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V
40 lencl 14164 . . . . . . . . 9 (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0)
412, 40syl 17 . . . . . . . 8 (𝜑 → (♯‘𝑀) ∈ ℕ0)
42 fvconst2g 7059 . . . . . . . 8 (((𝑀 ++ ⟨“(𝐹𝑀)”⟩) ∈ V ∧ (♯‘𝑀) ∈ ℕ0) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘(♯‘𝑀)) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
4339, 41, 42sylancr 586 . . . . . . 7 (𝜑 → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘(♯‘𝑀)) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
4440nn0zd 12353 . . . . . . . 8 (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℤ)
45 seq1 13662 . . . . . . . 8 ((♯‘𝑀) ∈ ℤ → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(♯‘𝑀)) = ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘(♯‘𝑀)))
462, 44, 453syl 18 . . . . . . 7 (𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(♯‘𝑀)) = ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘(♯‘𝑀)))
471, 2, 3, 4sseqfres 32260 . . . . . . . 8 (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀)
4847fveq2d 6760 . . . . . . . . 9 (𝜑 → (𝐹‘((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀)))) = (𝐹𝑀))
4948s1eqd 14234 . . . . . . . 8 (𝜑 → ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))))”⟩ = ⟨“(𝐹𝑀)”⟩)
5047, 49oveq12d 7273 . . . . . . 7 (𝜑 → (((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))))”⟩) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
5143, 46, 503eqtr4d 2788 . . . . . 6 (𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(♯‘𝑀)) = (((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))))”⟩))
5251a1i 11 . . . . 5 ((♯‘𝑀) ∈ ℤ → (𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(♯‘𝑀)) = (((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))))”⟩)))
53 seqp1 13664 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘(♯‘𝑀)) → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(𝑛 + 1)) = ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩))((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘(𝑛 + 1))))
5453adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(𝑛 + 1)) = ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩))((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘(𝑛 + 1))))
55 id 22 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎𝑥 = 𝑎)
56 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
5756s1eqd 14234 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → ⟨“(𝐹𝑥)”⟩ = ⟨“(𝐹𝑎)”⟩)
5855, 57oveq12d 7273 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑥 ++ ⟨“(𝐹𝑥)”⟩) = (𝑎 ++ ⟨“(𝐹𝑎)”⟩))
59 eqidd 2739 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) = (𝑎 ++ ⟨“(𝐹𝑎)”⟩))
6058, 59cbvmpov 7348 . . . . . . . . . . . . 13 (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ++ ⟨“(𝐹𝑎)”⟩))
6160a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ++ ⟨“(𝐹𝑎)”⟩)))
62 simprl 767 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (𝑎 = (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) ∧ 𝑏 = ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘(𝑛 + 1)))) → 𝑎 = (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛))
6362fveq2d 6760 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (𝑎 = (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) ∧ 𝑏 = ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘(𝑛 + 1)))) → (𝐹𝑎) = (𝐹‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛)))
6463s1eqd 14234 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (𝑎 = (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) ∧ 𝑏 = ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘(𝑛 + 1)))) → ⟨“(𝐹𝑎)”⟩ = ⟨“(𝐹‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛))”⟩)
6562, 64oveq12d 7273 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (𝑎 = (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) ∧ 𝑏 = ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘(𝑛 + 1)))) → (𝑎 ++ ⟨“(𝐹𝑎)”⟩) = ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) ++ ⟨“(𝐹‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛))”⟩))
66 fvexd 6771 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) ∈ V)
67 fvexd 6771 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → ((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘(𝑛 + 1)) ∈ V)
68 ovex 7288 . . . . . . . . . . . . 13 ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) ++ ⟨“(𝐹‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛))”⟩) ∈ V
6968a1i 11 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) ++ ⟨“(𝐹‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛))”⟩) ∈ V)
7061, 65, 66, 67, 69ovmpod 7403 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛)(𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩))((ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})‘(𝑛 + 1))) = ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) ++ ⟨“(𝐹‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛))”⟩))
7154, 70eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(𝑛 + 1)) = ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) ++ ⟨“(𝐹‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛))”⟩))
7271adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(𝑛 + 1)) = ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) ++ ⟨“(𝐹‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛))”⟩))
731adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → 𝑆 ∈ V)
742adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → 𝑀 ∈ Word 𝑆)
754adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → 𝐹:𝑊𝑆)
76 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → 𝑛 ∈ (ℤ‘(♯‘𝑀)))
7773, 74, 3, 75, 76sseqfv2 32261 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → ((𝑀seqstr𝐹)‘𝑛) = (lastS‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛)))
7877adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → ((𝑀seqstr𝐹)‘𝑛) = (lastS‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛)))
79 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩))
8079fveq2d 6760 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → (lastS‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛)) = (lastS‘(((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)))
811, 2, 3, 4sseqf 32259 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀seqstr𝐹):ℕ0𝑆)
82 fzo0ssnn0 13396 . . . . . . . . . . . . . . . . . . 19 (0..^𝑛) ⊆ ℕ0
83 fssres 6624 . . . . . . . . . . . . . . . . . . 19 (((𝑀seqstr𝐹):ℕ0𝑆 ∧ (0..^𝑛) ⊆ ℕ0) → ((𝑀seqstr𝐹) ↾ (0..^𝑛)):(0..^𝑛)⟶𝑆)
8481, 82, 83sylancl 585 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^𝑛)):(0..^𝑛)⟶𝑆)
85 iswrdi 14149 . . . . . . . . . . . . . . . . . 18 (((𝑀seqstr𝐹) ↾ (0..^𝑛)):(0..^𝑛)⟶𝑆 → ((𝑀seqstr𝐹) ↾ (0..^𝑛)) ∈ Word 𝑆)
8684, 85syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^𝑛)) ∈ Word 𝑆)
8786adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → ((𝑀seqstr𝐹) ↾ (0..^𝑛)) ∈ Word 𝑆)
88 elex 3440 . . . . . . . . . . . . . . . . . . . . 21 (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ∈ Word 𝑆 → ((𝑀seqstr𝐹) ↾ (0..^𝑛)) ∈ V)
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → ((𝑀seqstr𝐹) ↾ (0..^𝑛)) ∈ V)
9081adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → (𝑀seqstr𝐹):ℕ0𝑆)
91 eluznn0 12586 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝑀) ∈ ℕ0𝑛 ∈ (ℤ‘(♯‘𝑀))) → 𝑛 ∈ ℕ0)
9241, 91sylan 579 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → 𝑛 ∈ ℕ0)
9373, 90, 92subiwrdlen 32253 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → (♯‘((𝑀seqstr𝐹) ↾ (0..^𝑛))) = 𝑛)
9493, 76eqeltrd 2839 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → (♯‘((𝑀seqstr𝐹) ↾ (0..^𝑛))) ∈ (ℤ‘(♯‘𝑀)))
95 hashf 13980 . . . . . . . . . . . . . . . . . . . . 21 ♯:V⟶(ℕ0 ∪ {+∞})
96 ffn 6584 . . . . . . . . . . . . . . . . . . . . 21 (♯:V⟶(ℕ0 ∪ {+∞}) → ♯ Fn V)
97 elpreima 6917 . . . . . . . . . . . . . . . . . . . . 21 (♯ Fn V → (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ∈ V ∧ (♯‘((𝑀seqstr𝐹) ↾ (0..^𝑛))) ∈ (ℤ‘(♯‘𝑀)))))
9895, 96, 97mp2b 10 . . . . . . . . . . . . . . . . . . . 20 (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ∈ V ∧ (♯‘((𝑀seqstr𝐹) ↾ (0..^𝑛))) ∈ (ℤ‘(♯‘𝑀))))
9989, 94, 98sylanbrc 582 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → ((𝑀seqstr𝐹) ↾ (0..^𝑛)) ∈ (♯ “ (ℤ‘(♯‘𝑀))))
10087, 99elind 4124 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → ((𝑀seqstr𝐹) ↾ (0..^𝑛)) ∈ (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))))
101100, 3eleqtrrdi 2850 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → ((𝑀seqstr𝐹) ↾ (0..^𝑛)) ∈ 𝑊)
10275, 101ffvelrnd 6944 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛))) ∈ 𝑆)
103 lswccats1 14272 . . . . . . . . . . . . . . . 16 ((((𝑀seqstr𝐹) ↾ (0..^𝑛)) ∈ Word 𝑆 ∧ (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛))) ∈ 𝑆) → (lastS‘(((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛))))
10487, 102, 103syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → (lastS‘(((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛))))
105104adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → (lastS‘(((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛))))
10678, 80, 1053eqtrrd 2783 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛))) = ((𝑀seqstr𝐹)‘𝑛))
107106s1eqd 14234 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩ = ⟨“((𝑀seqstr𝐹)‘𝑛)”⟩)
108107oveq2d 7271 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“((𝑀seqstr𝐹)‘𝑛)”⟩))
10973, 90, 92iwrdsplit 32254 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → ((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“((𝑀seqstr𝐹)‘𝑛)”⟩))
110109adantr 480 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → ((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“((𝑀seqstr𝐹)‘𝑛)”⟩))
111108, 79, 1103eqtr4d 2788 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = ((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))))
112111fveq2d 6760 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → (𝐹‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛)) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1)))))
113112s1eqd 14234 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → ⟨“(𝐹‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛))”⟩ = ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))))”⟩)
114111, 113oveq12d 7273 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) ++ ⟨“(𝐹‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛))”⟩) = (((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))))”⟩))
11572, 114eqtrd 2778 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) ∧ (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(𝑛 + 1)) = (((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))))”⟩))
116115ex 412 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ‘(♯‘𝑀))) → ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩) → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(𝑛 + 1)) = (((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))))”⟩)))
117116expcom 413 . . . . . 6 (𝑛 ∈ (ℤ‘(♯‘𝑀)) → (𝜑 → ((seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩) → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(𝑛 + 1)) = (((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))))”⟩))))
118117a2d 29 . . . . 5 (𝑛 ∈ (ℤ‘(♯‘𝑀)) → ((𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑛) = (((𝑀seqstr𝐹) ↾ (0..^𝑛)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑛)))”⟩)) → (𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘(𝑛 + 1)) = (((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^(𝑛 + 1))))”⟩))))
11914, 22, 30, 38, 52, 118uzind4 12575 . . . 4 (𝑁 ∈ (ℤ‘(♯‘𝑀)) → (𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑁) = (((𝑀seqstr𝐹) ↾ (0..^𝑁)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁)))”⟩)))
1205, 119mpcom 38 . . 3 (𝜑 → (seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑁) = (((𝑀seqstr𝐹) ↾ (0..^𝑁)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁)))”⟩))
121120fveq2d 6760 . 2 (𝜑 → (lastS‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))‘𝑁)) = (lastS‘(((𝑀seqstr𝐹) ↾ (0..^𝑁)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁)))”⟩)))
122 fzo0ssnn0 13396 . . . . 5 (0..^𝑁) ⊆ ℕ0
123 fssres 6624 . . . . 5 (((𝑀seqstr𝐹):ℕ0𝑆 ∧ (0..^𝑁) ⊆ ℕ0) → ((𝑀seqstr𝐹) ↾ (0..^𝑁)):(0..^𝑁)⟶𝑆)
12481, 122, 123sylancl 585 . . . 4 (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^𝑁)):(0..^𝑁)⟶𝑆)
125 iswrdi 14149 . . . 4 (((𝑀seqstr𝐹) ↾ (0..^𝑁)):(0..^𝑁)⟶𝑆 → ((𝑀seqstr𝐹) ↾ (0..^𝑁)) ∈ Word 𝑆)
126124, 125syl 17 . . 3 (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^𝑁)) ∈ Word 𝑆)
127 elex 3440 . . . . . . . 8 (((𝑀seqstr𝐹) ↾ (0..^𝑁)) ∈ Word 𝑆 → ((𝑀seqstr𝐹) ↾ (0..^𝑁)) ∈ V)
128126, 127syl 17 . . . . . . 7 (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^𝑁)) ∈ V)
129 eluznn0 12586 . . . . . . . . . 10 (((♯‘𝑀) ∈ ℕ0𝑁 ∈ (ℤ‘(♯‘𝑀))) → 𝑁 ∈ ℕ0)
13041, 5, 129syl2anc 583 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
1311, 81, 130subiwrdlen 32253 . . . . . . . 8 (𝜑 → (♯‘((𝑀seqstr𝐹) ↾ (0..^𝑁))) = 𝑁)
132131, 5eqeltrd 2839 . . . . . . 7 (𝜑 → (♯‘((𝑀seqstr𝐹) ↾ (0..^𝑁))) ∈ (ℤ‘(♯‘𝑀)))
133 elpreima 6917 . . . . . . . 8 (♯ Fn V → (((𝑀seqstr𝐹) ↾ (0..^𝑁)) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ (((𝑀seqstr𝐹) ↾ (0..^𝑁)) ∈ V ∧ (♯‘((𝑀seqstr𝐹) ↾ (0..^𝑁))) ∈ (ℤ‘(♯‘𝑀)))))
13495, 96, 133mp2b 10 . . . . . . 7 (((𝑀seqstr𝐹) ↾ (0..^𝑁)) ∈ (♯ “ (ℤ‘(♯‘𝑀))) ↔ (((𝑀seqstr𝐹) ↾ (0..^𝑁)) ∈ V ∧ (♯‘((𝑀seqstr𝐹) ↾ (0..^𝑁))) ∈ (ℤ‘(♯‘𝑀))))
135128, 132, 134sylanbrc 582 . . . . . 6 (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^𝑁)) ∈ (♯ “ (ℤ‘(♯‘𝑀))))
136126, 135elind 4124 . . . . 5 (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^𝑁)) ∈ (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))))
137136, 3eleqtrrdi 2850 . . . 4 (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^𝑁)) ∈ 𝑊)
1384, 137ffvelrnd 6944 . . 3 (𝜑 → (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁))) ∈ 𝑆)
139 lswccats1 14272 . . 3 ((((𝑀seqstr𝐹) ↾ (0..^𝑁)) ∈ Word 𝑆 ∧ (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁))) ∈ 𝑆) → (lastS‘(((𝑀seqstr𝐹) ↾ (0..^𝑁)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁)))”⟩)) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁))))
140126, 138, 139syl2anc 583 . 2 (𝜑 → (lastS‘(((𝑀seqstr𝐹) ↾ (0..^𝑁)) ++ ⟨“(𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁)))”⟩)) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁))))
1416, 121, 1403eqtrd 2782 1 (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  cin 3882  wss 3883  {csn 4558   × cxp 5578  ccnv 5579  cres 5582  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937  0cn0 12163  cz 12249  cuz 12511  ..^cfzo 13311  seqcseq 13649  chash 13972  Word cword 14145  lastSclsw 14193   ++ cconcat 14201  ⟨“cs1 14228  seqstrcsseq 32250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-sseq 32251
This theorem is referenced by:  fibp1  32268
  Copyright terms: Public domain W3C validator