Step | Hyp | Ref
| Expression |
1 | | sseqval.1 |
. . 3
β’ (π β π β V) |
2 | | sseqval.2 |
. . 3
β’ (π β π β Word π) |
3 | | sseqval.3 |
. . 3
β’ π = (Word π β© (β‘β― β
(β€β₯β(β―βπ)))) |
4 | | sseqval.4 |
. . 3
β’ (π β πΉ:πβΆπ) |
5 | | sseqfv2.4 |
. . 3
β’ (π β π β
(β€β₯β(β―βπ))) |
6 | 1, 2, 3, 4, 5 | sseqfv2 33381 |
. 2
β’ (π β ((πseqstrπΉ)βπ) = (lastSβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ))) |
7 | | fveq2 6888 |
. . . . . . 7
β’ (π = (β―βπ) β
(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(β―βπ))) |
8 | | oveq2 7413 |
. . . . . . . . 9
β’ (π = (β―βπ) β (0..^π) = (0..^(β―βπ))) |
9 | 8 | reseq2d 5979 |
. . . . . . . 8
β’ (π = (β―βπ) β ((πseqstrπΉ) βΎ (0..^π)) = ((πseqstrπΉ) βΎ (0..^(β―βπ)))) |
10 | 9 | fveq2d 6892 |
. . . . . . . . 9
β’ (π = (β―βπ) β (πΉβ((πseqstrπΉ) βΎ (0..^π))) = (πΉβ((πseqstrπΉ) βΎ (0..^(β―βπ))))) |
11 | 10 | s1eqd 14547 |
. . . . . . . 8
β’ (π = (β―βπ) β β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ© = β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(β―βπ))))ββ©) |
12 | 9, 11 | oveq12d 7423 |
. . . . . . 7
β’ (π = (β―βπ) β (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©) = (((πseqstrπΉ) βΎ (0..^(β―βπ))) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(β―βπ))))ββ©)) |
13 | 7, 12 | eqeq12d 2748 |
. . . . . 6
β’ (π = (β―βπ) β
((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©) β
(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(β―βπ)) = (((πseqstrπΉ) βΎ (0..^(β―βπ))) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(β―βπ))))ββ©))) |
14 | 13 | imbi2d 340 |
. . . . 5
β’ (π = (β―βπ) β ((π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β (π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(β―βπ)) = (((πseqstrπΉ) βΎ (0..^(β―βπ))) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(β―βπ))))ββ©)))) |
15 | | fveq2 6888 |
. . . . . . 7
β’ (π = π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ)) |
16 | | oveq2 7413 |
. . . . . . . . 9
β’ (π = π β (0..^π) = (0..^π)) |
17 | 16 | reseq2d 5979 |
. . . . . . . 8
β’ (π = π β ((πseqstrπΉ) βΎ (0..^π)) = ((πseqstrπΉ) βΎ (0..^π))) |
18 | 17 | fveq2d 6892 |
. . . . . . . . 9
β’ (π = π β (πΉβ((πseqstrπΉ) βΎ (0..^π))) = (πΉβ((πseqstrπΉ) βΎ (0..^π)))) |
19 | 18 | s1eqd 14547 |
. . . . . . . 8
β’ (π = π β β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ© = β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©) |
20 | 17, 19 | oveq12d 7423 |
. . . . . . 7
β’ (π = π β (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) |
21 | 15, 20 | eqeq12d 2748 |
. . . . . 6
β’ (π = π β ((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©) β
(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©))) |
22 | 21 | imbi2d 340 |
. . . . 5
β’ (π = π β ((π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β (π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)))) |
23 | | fveq2 6888 |
. . . . . . 7
β’ (π = (π + 1) β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(π + 1))) |
24 | | oveq2 7413 |
. . . . . . . . 9
β’ (π = (π + 1) β (0..^π) = (0..^(π + 1))) |
25 | 24 | reseq2d 5979 |
. . . . . . . 8
β’ (π = (π + 1) β ((πseqstrπΉ) βΎ (0..^π)) = ((πseqstrπΉ) βΎ (0..^(π + 1)))) |
26 | 25 | fveq2d 6892 |
. . . . . . . . 9
β’ (π = (π + 1) β (πΉβ((πseqstrπΉ) βΎ (0..^π))) = (πΉβ((πseqstrπΉ) βΎ (0..^(π + 1))))) |
27 | 26 | s1eqd 14547 |
. . . . . . . 8
β’ (π = (π + 1) β β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ© = β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(π + 1))))ββ©) |
28 | 25, 27 | oveq12d 7423 |
. . . . . . 7
β’ (π = (π + 1) β (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©) = (((πseqstrπΉ) βΎ (0..^(π + 1))) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(π + 1))))ββ©)) |
29 | 23, 28 | eqeq12d 2748 |
. . . . . 6
β’ (π = (π + 1) β ((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©) β
(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(π + 1)) = (((πseqstrπΉ) βΎ (0..^(π + 1))) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(π + 1))))ββ©))) |
30 | 29 | imbi2d 340 |
. . . . 5
β’ (π = (π + 1) β ((π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β (π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(π + 1)) = (((πseqstrπΉ) βΎ (0..^(π + 1))) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(π + 1))))ββ©)))) |
31 | | fveq2 6888 |
. . . . . . 7
β’ (π = π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ)) |
32 | | oveq2 7413 |
. . . . . . . . 9
β’ (π = π β (0..^π) = (0..^π)) |
33 | 32 | reseq2d 5979 |
. . . . . . . 8
β’ (π = π β ((πseqstrπΉ) βΎ (0..^π)) = ((πseqstrπΉ) βΎ (0..^π))) |
34 | 33 | fveq2d 6892 |
. . . . . . . . 9
β’ (π = π β (πΉβ((πseqstrπΉ) βΎ (0..^π))) = (πΉβ((πseqstrπΉ) βΎ (0..^π)))) |
35 | 34 | s1eqd 14547 |
. . . . . . . 8
β’ (π = π β β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ© = β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©) |
36 | 33, 35 | oveq12d 7423 |
. . . . . . 7
β’ (π = π β (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) |
37 | 31, 36 | eqeq12d 2748 |
. . . . . 6
β’ (π = π β ((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©) β
(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©))) |
38 | 37 | imbi2d 340 |
. . . . 5
β’ (π = π β ((π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β (π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)))) |
39 | | ovex 7438 |
. . . . . . . 8
β’ (π ++ β¨β(πΉβπ)ββ©) β V |
40 | | lencl 14479 |
. . . . . . . . 9
β’ (π β Word π β (β―βπ) β
β0) |
41 | 2, 40 | syl 17 |
. . . . . . . 8
β’ (π β (β―βπ) β
β0) |
42 | | fvconst2g 7199 |
. . . . . . . 8
β’ (((π ++ β¨β(πΉβπ)ββ©) β V β§
(β―βπ) β
β0) β ((β0 Γ {(π ++ β¨β(πΉβπ)ββ©)})β(β―βπ)) = (π ++ β¨β(πΉβπ)ββ©)) |
43 | 39, 41, 42 | sylancr 587 |
. . . . . . 7
β’ (π β ((β0
Γ {(π ++
β¨β(πΉβπ)ββ©)})β(β―βπ)) = (π ++ β¨β(πΉβπ)ββ©)) |
44 | 40 | nn0zd 12580 |
. . . . . . . 8
β’ (π β Word π β (β―βπ) β β€) |
45 | | seq1 13975 |
. . . . . . . 8
β’
((β―βπ)
β β€ β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(β―βπ)) = ((β0
Γ {(π ++
β¨β(πΉβπ)ββ©)})β(β―βπ))) |
46 | 2, 44, 45 | 3syl 18 |
. . . . . . 7
β’ (π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(β―βπ)) = ((β0
Γ {(π ++
β¨β(πΉβπ)ββ©)})β(β―βπ))) |
47 | 1, 2, 3, 4 | sseqfres 33380 |
. . . . . . . 8
β’ (π β ((πseqstrπΉ) βΎ (0..^(β―βπ))) = π) |
48 | 47 | fveq2d 6892 |
. . . . . . . . 9
β’ (π β (πΉβ((πseqstrπΉ) βΎ (0..^(β―βπ)))) = (πΉβπ)) |
49 | 48 | s1eqd 14547 |
. . . . . . . 8
β’ (π β β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(β―βπ))))ββ© =
β¨β(πΉβπ)ββ©) |
50 | 47, 49 | oveq12d 7423 |
. . . . . . 7
β’ (π β (((πseqstrπΉ) βΎ (0..^(β―βπ))) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(β―βπ))))ββ©) = (π ++ β¨β(πΉβπ)ββ©)) |
51 | 43, 46, 50 | 3eqtr4d 2782 |
. . . . . 6
β’ (π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(β―βπ)) = (((πseqstrπΉ) βΎ (0..^(β―βπ))) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(β―βπ))))ββ©)) |
52 | 51 | a1i 11 |
. . . . 5
β’
((β―βπ)
β β€ β (π
β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(β―βπ)) = (((πseqstrπΉ) βΎ (0..^(β―βπ))) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(β―βπ))))ββ©))) |
53 | | seqp1 13977 |
. . . . . . . . . . . 12
β’ (π β
(β€β₯β(β―βπ)) β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(π + 1)) =
((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ)(π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©))((β0 Γ
{(π ++ β¨β(πΉβπ)ββ©)})β(π + 1)))) |
54 | 53 | adantl 482 |
. . . . . . . . . . 11
β’ ((π β§ π β
(β€β₯β(β―βπ))) β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(π + 1)) =
((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ)(π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©))((β0 Γ
{(π ++ β¨β(πΉβπ)ββ©)})β(π + 1)))) |
55 | | id 22 |
. . . . . . . . . . . . . . 15
β’ (π₯ = π β π₯ = π) |
56 | | fveq2 6888 |
. . . . . . . . . . . . . . . 16
β’ (π₯ = π β (πΉβπ₯) = (πΉβπ)) |
57 | 56 | s1eqd 14547 |
. . . . . . . . . . . . . . 15
β’ (π₯ = π β β¨β(πΉβπ₯)ββ© = β¨β(πΉβπ)ββ©) |
58 | 55, 57 | oveq12d 7423 |
. . . . . . . . . . . . . 14
β’ (π₯ = π β (π₯ ++ β¨β(πΉβπ₯)ββ©) = (π ++ β¨β(πΉβπ)ββ©)) |
59 | | eqidd 2733 |
. . . . . . . . . . . . . 14
β’ (π¦ = π β (π ++ β¨β(πΉβπ)ββ©) = (π ++ β¨β(πΉβπ)ββ©)) |
60 | 58, 59 | cbvmpov 7500 |
. . . . . . . . . . . . 13
β’ (π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)) = (π β V, π β V β¦ (π ++ β¨β(πΉβπ)ββ©)) |
61 | 60 | a1i 11 |
. . . . . . . . . . . 12
β’ ((π β§ π β
(β€β₯β(β―βπ))) β (π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)) = (π β V, π β V β¦ (π ++ β¨β(πΉβπ)ββ©))) |
62 | | simprl 769 |
. . . . . . . . . . . . 13
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (π = (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) β§ π = ((β0 Γ {(π ++ β¨β(πΉβπ)ββ©)})β(π + 1)))) β π = (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ)) |
63 | 62 | fveq2d 6892 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (π = (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) β§ π = ((β0 Γ {(π ++ β¨β(πΉβπ)ββ©)})β(π + 1)))) β (πΉβπ) = (πΉβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ))) |
64 | 63 | s1eqd 14547 |
. . . . . . . . . . . . 13
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (π = (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) β§ π = ((β0 Γ {(π ++ β¨β(πΉβπ)ββ©)})β(π + 1)))) β β¨β(πΉβπ)ββ© = β¨β(πΉβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ))ββ©) |
65 | 62, 64 | oveq12d 7423 |
. . . . . . . . . . . 12
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (π = (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) β§ π = ((β0 Γ {(π ++ β¨β(πΉβπ)ββ©)})β(π + 1)))) β (π ++ β¨β(πΉβπ)ββ©) = ((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) ++ β¨β(πΉβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ))ββ©)) |
66 | | fvexd 6903 |
. . . . . . . . . . . 12
β’ ((π β§ π β
(β€β₯β(β―βπ))) β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) β V) |
67 | | fvexd 6903 |
. . . . . . . . . . . 12
β’ ((π β§ π β
(β€β₯β(β―βπ))) β ((β0 Γ
{(π ++ β¨β(πΉβπ)ββ©)})β(π + 1)) β V) |
68 | | ovex 7438 |
. . . . . . . . . . . . 13
β’
((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) ++ β¨β(πΉβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ))ββ©) β
V |
69 | 68 | a1i 11 |
. . . . . . . . . . . 12
β’ ((π β§ π β
(β€β₯β(β―βπ))) β ((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) ++ β¨β(πΉβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ))ββ©) β
V) |
70 | 61, 65, 66, 67, 69 | ovmpod 7556 |
. . . . . . . . . . 11
β’ ((π β§ π β
(β€β₯β(β―βπ))) β ((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ)(π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©))((β0 Γ
{(π ++ β¨β(πΉβπ)ββ©)})β(π + 1))) = ((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) ++ β¨β(πΉβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ))ββ©)) |
71 | 54, 70 | eqtrd 2772 |
. . . . . . . . . 10
β’ ((π β§ π β
(β€β₯β(β―βπ))) β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(π + 1)) =
((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) ++ β¨β(πΉβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ))ββ©)) |
72 | 71 | adantr 481 |
. . . . . . . . 9
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β
(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(π + 1)) =
((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) ++ β¨β(πΉβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ))ββ©)) |
73 | 1 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β
(β€β₯β(β―βπ))) β π β V) |
74 | 2 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β
(β€β₯β(β―βπ))) β π β Word π) |
75 | 4 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β
(β€β₯β(β―βπ))) β πΉ:πβΆπ) |
76 | | simpr 485 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β
(β€β₯β(β―βπ))) β π β
(β€β₯β(β―βπ))) |
77 | 73, 74, 3, 75, 76 | sseqfv2 33381 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β
(β€β₯β(β―βπ))) β ((πseqstrπΉ)βπ) = (lastSβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ))) |
78 | 77 | adantr 481 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β ((πseqstrπΉ)βπ) = (lastSβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ))) |
79 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β
(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) |
80 | 79 | fveq2d 6892 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β
(lastSβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ)) = (lastSβ(((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©))) |
81 | 1, 2, 3, 4 | sseqf 33379 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (πseqstrπΉ):β0βΆπ) |
82 | | fzo0ssnn0 13709 |
. . . . . . . . . . . . . . . . . . 19
β’
(0..^π) β
β0 |
83 | | fssres 6754 |
. . . . . . . . . . . . . . . . . . 19
β’ (((πseqstrπΉ):β0βΆπ β§ (0..^π) β β0) β ((πseqstrπΉ) βΎ (0..^π)):(0..^π)βΆπ) |
84 | 81, 82, 83 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
β’ (π β ((πseqstrπΉ) βΎ (0..^π)):(0..^π)βΆπ) |
85 | | iswrdi 14464 |
. . . . . . . . . . . . . . . . . 18
β’ (((πseqstrπΉ) βΎ (0..^π)):(0..^π)βΆπ β ((πseqstrπΉ) βΎ (0..^π)) β Word π) |
86 | 84, 85 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π β ((πseqstrπΉ) βΎ (0..^π)) β Word π) |
87 | 86 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β
(β€β₯β(β―βπ))) β ((πseqstrπΉ) βΎ (0..^π)) β Word π) |
88 | | elex 3492 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((πseqstrπΉ) βΎ (0..^π)) β Word π β ((πseqstrπΉ) βΎ (0..^π)) β V) |
89 | 87, 88 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β
(β€β₯β(β―βπ))) β ((πseqstrπΉ) βΎ (0..^π)) β V) |
90 | 81 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β
(β€β₯β(β―βπ))) β (πseqstrπΉ):β0βΆπ) |
91 | | eluznn0 12897 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
(((β―βπ)
β β0 β§ π β
(β€β₯β(β―βπ))) β π β β0) |
92 | 41, 91 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β
(β€β₯β(β―βπ))) β π β β0) |
93 | 73, 90, 92 | subiwrdlen 33373 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β
(β€β₯β(β―βπ))) β (β―β((πseqstrπΉ) βΎ (0..^π))) = π) |
94 | 93, 76 | eqeltrd 2833 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β
(β€β₯β(β―βπ))) β (β―β((πseqstrπΉ) βΎ (0..^π))) β
(β€β₯β(β―βπ))) |
95 | | hashf 14294 |
. . . . . . . . . . . . . . . . . . . . 21
β’
β―:VβΆ(β0 βͺ {+β}) |
96 | | ffn 6714 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(β―:VβΆ(β0 βͺ {+β}) β β―
Fn V) |
97 | | elpreima 7056 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (β―
Fn V β (((πseqstrπΉ) βΎ (0..^π)) β (β‘β― β
(β€β₯β(β―βπ))) β (((πseqstrπΉ) βΎ (0..^π)) β V β§ (β―β((πseqstrπΉ) βΎ (0..^π))) β
(β€β₯β(β―βπ))))) |
98 | 95, 96, 97 | mp2b 10 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((πseqstrπΉ) βΎ (0..^π)) β (β‘β― β
(β€β₯β(β―βπ))) β (((πseqstrπΉ) βΎ (0..^π)) β V β§ (β―β((πseqstrπΉ) βΎ (0..^π))) β
(β€β₯β(β―βπ)))) |
99 | 89, 94, 98 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β
(β€β₯β(β―βπ))) β ((πseqstrπΉ) βΎ (0..^π)) β (β‘β― β
(β€β₯β(β―βπ)))) |
100 | 87, 99 | elind 4193 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β
(β€β₯β(β―βπ))) β ((πseqstrπΉ) βΎ (0..^π)) β (Word π β© (β‘β― β
(β€β₯β(β―βπ))))) |
101 | 100, 3 | eleqtrrdi 2844 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β
(β€β₯β(β―βπ))) β ((πseqstrπΉ) βΎ (0..^π)) β π) |
102 | 75, 101 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β
(β€β₯β(β―βπ))) β (πΉβ((πseqstrπΉ) βΎ (0..^π))) β π) |
103 | | lswccats1 14580 |
. . . . . . . . . . . . . . . 16
β’ ((((πseqstrπΉ) βΎ (0..^π)) β Word π β§ (πΉβ((πseqstrπΉ) βΎ (0..^π))) β π) β (lastSβ(((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) = (πΉβ((πseqstrπΉ) βΎ (0..^π)))) |
104 | 87, 102, 103 | syl2anc 584 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β
(β€β₯β(β―βπ))) β (lastSβ(((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) = (πΉβ((πseqstrπΉ) βΎ (0..^π)))) |
105 | 104 | adantr 481 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β
(lastSβ(((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) = (πΉβ((πseqstrπΉ) βΎ (0..^π)))) |
106 | 78, 80, 105 | 3eqtrrd 2777 |
. . . . . . . . . . . . 13
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β (πΉβ((πseqstrπΉ) βΎ (0..^π))) = ((πseqstrπΉ)βπ)) |
107 | 106 | s1eqd 14547 |
. . . . . . . . . . . 12
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ© = β¨β((πseqstrπΉ)βπ)ββ©) |
108 | 107 | oveq2d 7421 |
. . . . . . . . . . 11
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β((πseqstrπΉ)βπ)ββ©)) |
109 | 73, 90, 92 | iwrdsplit 33374 |
. . . . . . . . . . . 12
β’ ((π β§ π β
(β€β₯β(β―βπ))) β ((πseqstrπΉ) βΎ (0..^(π + 1))) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β((πseqstrπΉ)βπ)ββ©)) |
110 | 109 | adantr 481 |
. . . . . . . . . . 11
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β ((πseqstrπΉ) βΎ (0..^(π + 1))) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β((πseqstrπΉ)βπ)ββ©)) |
111 | 108, 79, 110 | 3eqtr4d 2782 |
. . . . . . . . . 10
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β
(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = ((πseqstrπΉ) βΎ (0..^(π + 1)))) |
112 | 111 | fveq2d 6892 |
. . . . . . . . . . 11
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β (πΉβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ)) = (πΉβ((πseqstrπΉ) βΎ (0..^(π + 1))))) |
113 | 112 | s1eqd 14547 |
. . . . . . . . . 10
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β β¨β(πΉβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ))ββ© =
β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(π + 1))))ββ©) |
114 | 111, 113 | oveq12d 7423 |
. . . . . . . . 9
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β
((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) ++ β¨β(πΉβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ))ββ©) = (((πseqstrπΉ) βΎ (0..^(π + 1))) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(π + 1))))ββ©)) |
115 | 72, 114 | eqtrd 2772 |
. . . . . . . 8
β’ (((π β§ π β
(β€β₯β(β―βπ))) β§ (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β
(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(π + 1)) = (((πseqstrπΉ) βΎ (0..^(π + 1))) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(π + 1))))ββ©)) |
116 | 115 | ex 413 |
. . . . . . 7
β’ ((π β§ π β
(β€β₯β(β―βπ))) β ((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©) β
(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(π + 1)) = (((πseqstrπΉ) βΎ (0..^(π + 1))) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(π + 1))))ββ©))) |
117 | 116 | expcom 414 |
. . . . . 6
β’ (π β
(β€β₯β(β―βπ)) β (π β ((seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©) β
(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(π + 1)) = (((πseqstrπΉ) βΎ (0..^(π + 1))) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(π + 1))))ββ©)))) |
118 | 117 | a2d 29 |
. . . . 5
β’ (π β
(β€β₯β(β―βπ)) β ((π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) β (π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))β(π + 1)) = (((πseqstrπΉ) βΎ (0..^(π + 1))) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^(π + 1))))ββ©)))) |
119 | 14, 22, 30, 38, 52, 118 | uzind4 12886 |
. . . 4
β’ (π β
(β€β₯β(β―βπ)) β (π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©))) |
120 | 5, 119 | mpcom 38 |
. . 3
β’ (π β (seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ) = (((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) |
121 | 120 | fveq2d 6892 |
. 2
β’ (π β
(lastSβ(seq(β―βπ)((π₯ β V, π¦ β V β¦ (π₯ ++ β¨β(πΉβπ₯)ββ©)), (β0
Γ {(π ++
β¨β(πΉβπ)ββ©)}))βπ)) = (lastSβ(((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©))) |
122 | | fzo0ssnn0 13709 |
. . . . 5
β’
(0..^π) β
β0 |
123 | | fssres 6754 |
. . . . 5
β’ (((πseqstrπΉ):β0βΆπ β§ (0..^π) β β0) β
((πseqstrπΉ) βΎ (0..^π)):(0..^π)βΆπ) |
124 | 81, 122, 123 | sylancl 586 |
. . . 4
β’ (π β ((πseqstrπΉ) βΎ (0..^π)):(0..^π)βΆπ) |
125 | | iswrdi 14464 |
. . . 4
β’ (((πseqstrπΉ) βΎ (0..^π)):(0..^π)βΆπ β ((πseqstrπΉ) βΎ (0..^π)) β Word π) |
126 | 124, 125 | syl 17 |
. . 3
β’ (π β ((πseqstrπΉ) βΎ (0..^π)) β Word π) |
127 | | elex 3492 |
. . . . . . . 8
β’ (((πseqstrπΉ) βΎ (0..^π)) β Word π β ((πseqstrπΉ) βΎ (0..^π)) β V) |
128 | 126, 127 | syl 17 |
. . . . . . 7
β’ (π β ((πseqstrπΉ) βΎ (0..^π)) β V) |
129 | | eluznn0 12897 |
. . . . . . . . . 10
β’
(((β―βπ)
β β0 β§ π β
(β€β₯β(β―βπ))) β π β
β0) |
130 | 41, 5, 129 | syl2anc 584 |
. . . . . . . . 9
β’ (π β π β
β0) |
131 | 1, 81, 130 | subiwrdlen 33373 |
. . . . . . . 8
β’ (π β (β―β((πseqstrπΉ) βΎ (0..^π))) = π) |
132 | 131, 5 | eqeltrd 2833 |
. . . . . . 7
β’ (π β (β―β((πseqstrπΉ) βΎ (0..^π))) β
(β€β₯β(β―βπ))) |
133 | | elpreima 7056 |
. . . . . . . 8
β’ (β―
Fn V β (((πseqstrπΉ) βΎ (0..^π)) β (β‘β― β
(β€β₯β(β―βπ))) β (((πseqstrπΉ) βΎ (0..^π)) β V β§ (β―β((πseqstrπΉ) βΎ (0..^π))) β
(β€β₯β(β―βπ))))) |
134 | 95, 96, 133 | mp2b 10 |
. . . . . . 7
β’ (((πseqstrπΉ) βΎ (0..^π)) β (β‘β― β
(β€β₯β(β―βπ))) β (((πseqstrπΉ) βΎ (0..^π)) β V β§ (β―β((πseqstrπΉ) βΎ (0..^π))) β
(β€β₯β(β―βπ)))) |
135 | 128, 132,
134 | sylanbrc 583 |
. . . . . 6
β’ (π β ((πseqstrπΉ) βΎ (0..^π)) β (β‘β― β
(β€β₯β(β―βπ)))) |
136 | 126, 135 | elind 4193 |
. . . . 5
β’ (π β ((πseqstrπΉ) βΎ (0..^π)) β (Word π β© (β‘β― β
(β€β₯β(β―βπ))))) |
137 | 136, 3 | eleqtrrdi 2844 |
. . . 4
β’ (π β ((πseqstrπΉ) βΎ (0..^π)) β π) |
138 | 4, 137 | ffvelcdmd 7084 |
. . 3
β’ (π β (πΉβ((πseqstrπΉ) βΎ (0..^π))) β π) |
139 | | lswccats1 14580 |
. . 3
β’ ((((πseqstrπΉ) βΎ (0..^π)) β Word π β§ (πΉβ((πseqstrπΉ) βΎ (0..^π))) β π) β (lastSβ(((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) = (πΉβ((πseqstrπΉ) βΎ (0..^π)))) |
140 | 126, 138,
139 | syl2anc 584 |
. 2
β’ (π β (lastSβ(((πseqstrπΉ) βΎ (0..^π)) ++ β¨β(πΉβ((πseqstrπΉ) βΎ (0..^π)))ββ©)) = (πΉβ((πseqstrπΉ) βΎ (0..^π)))) |
141 | 6, 121, 140 | 3eqtrd 2776 |
1
β’ (π β ((πseqstrπΉ)βπ) = (πΉβ((πseqstrπΉ) βΎ (0..^π)))) |