![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgpup2 | Structured version Visualization version GIF version |
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
Ref | Expression |
---|---|
frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
frgpup.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
frgpup.y | ⊢ (𝜑 → 𝐴 ∈ 𝐼) |
Ref | Expression |
---|---|
frgpup2 | ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
2 | frgpup.y | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐼) | |
3 | frgpup.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
4 | frgpup.u | . . . . 5 ⊢ 𝑈 = (varFGrp‘𝐼) | |
5 | 3, 4 | vrgpval 18653 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
6 | 1, 2, 5 | syl2anc 576 | . . 3 ⊢ (𝜑 → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
7 | 6 | fveq2d 6503 | . 2 ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ )) |
8 | 0ex 5068 | . . . . . . . 8 ⊢ ∅ ∈ V | |
9 | 8 | prid1 4572 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1o} |
10 | df2o3 7919 | . . . . . . 7 ⊢ 2o = {∅, 1o} | |
11 | 9, 10 | eleqtrri 2866 | . . . . . 6 ⊢ ∅ ∈ 2o |
12 | opelxpi 5444 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) | |
13 | 2, 11, 12 | sylancl 577 | . . . . 5 ⊢ (𝜑 → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) |
14 | 13 | s1cld 13766 | . . . 4 ⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉 ∈ Word (𝐼 × 2o)) |
15 | frgpup.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
16 | 2on 7914 | . . . . . . 7 ⊢ 2o ∈ On | |
17 | xpexg 7290 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
18 | 1, 16, 17 | sylancl 577 | . . . . . 6 ⊢ (𝜑 → (𝐼 × 2o) ∈ V) |
19 | wrdexg 13682 | . . . . . 6 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
20 | fvi 6568 | . . . . . 6 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
21 | 18, 19, 20 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
22 | 15, 21 | syl5eq 2827 | . . . 4 ⊢ (𝜑 → 𝑊 = Word (𝐼 × 2o)) |
23 | 14, 22 | eleqtrrd 2870 | . . 3 ⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉 ∈ 𝑊) |
24 | frgpup.b | . . . 4 ⊢ 𝐵 = (Base‘𝐻) | |
25 | frgpup.n | . . . 4 ⊢ 𝑁 = (invg‘𝐻) | |
26 | frgpup.t | . . . 4 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
27 | frgpup.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
28 | frgpup.a | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
29 | frgpup.g | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
30 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
31 | frgpup.e | . . . 4 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
32 | 24, 25, 26, 27, 1, 28, 15, 3, 29, 30, 31 | frgpupval 18660 | . . 3 ⊢ ((𝜑 ∧ 〈“〈𝐴, ∅〉”〉 ∈ 𝑊) → (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ ) = (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉))) |
33 | 23, 32 | mpdan 674 | . 2 ⊢ (𝜑 → (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ ) = (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉))) |
34 | 24, 25, 26, 27, 1, 28 | frgpuptf 18656 | . . . . . 6 ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
35 | s1co 14057 | . . . . . 6 ⊢ ((〈𝐴, ∅〉 ∈ (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝑇‘〈𝐴, ∅〉)”〉) | |
36 | 13, 34, 35 | syl2anc 576 | . . . . 5 ⊢ (𝜑 → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝑇‘〈𝐴, ∅〉)”〉) |
37 | df-ov 6979 | . . . . . . 7 ⊢ (𝐴𝑇∅) = (𝑇‘〈𝐴, ∅〉) | |
38 | iftrue 4356 | . . . . . . . . . 10 ⊢ (𝑧 = ∅ → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝑦)) | |
39 | fveq2 6499 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
40 | 38, 39 | sylan9eqr 2837 | . . . . . . . . 9 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = ∅) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝐴)) |
41 | fvex 6512 | . . . . . . . . 9 ⊢ (𝐹‘𝐴) ∈ V | |
42 | 40, 26, 41 | ovmpoa 7121 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → (𝐴𝑇∅) = (𝐹‘𝐴)) |
43 | 2, 11, 42 | sylancl 577 | . . . . . . 7 ⊢ (𝜑 → (𝐴𝑇∅) = (𝐹‘𝐴)) |
44 | 37, 43 | syl5eqr 2829 | . . . . . 6 ⊢ (𝜑 → (𝑇‘〈𝐴, ∅〉) = (𝐹‘𝐴)) |
45 | 44 | s1eqd 13764 | . . . . 5 ⊢ (𝜑 → 〈“(𝑇‘〈𝐴, ∅〉)”〉 = 〈“(𝐹‘𝐴)”〉) |
46 | 36, 45 | eqtrd 2815 | . . . 4 ⊢ (𝜑 → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝐹‘𝐴)”〉) |
47 | 46 | oveq2d 6992 | . . 3 ⊢ (𝜑 → (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉)) = (𝐻 Σg 〈“(𝐹‘𝐴)”〉)) |
48 | 28, 2 | ffvelrnd 6677 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) |
49 | 24 | gsumws1 17844 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (𝐻 Σg 〈“(𝐹‘𝐴)”〉) = (𝐹‘𝐴)) |
50 | 48, 49 | syl 17 | . . 3 ⊢ (𝜑 → (𝐻 Σg 〈“(𝐹‘𝐴)”〉) = (𝐹‘𝐴)) |
51 | 47, 50 | eqtrd 2815 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉)) = (𝐹‘𝐴)) |
52 | 7, 33, 51 | 3eqtrd 2819 | 1 ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 Vcvv 3416 ∅c0 4179 ifcif 4350 {cpr 4443 〈cop 4447 ↦ cmpt 5008 I cid 5311 × cxp 5405 ran crn 5408 ∘ ccom 5411 Oncon0 6029 ⟶wf 6184 ‘cfv 6188 (class class class)co 6976 ∈ cmpo 6978 1oc1o 7898 2oc2o 7899 [cec 8087 Word cword 13672 〈“cs1 13758 Basecbs 16339 Σg cgsu 16570 Grpcgrp 17891 invgcminusg 17892 ~FG cefg 18590 freeGrpcfrgp 18591 varFGrpcvrgp 18592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-ot 4450 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-ec 8091 df-qs 8095 df-map 8208 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-sup 8701 df-inf 8702 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-z 11794 df-dec 11912 df-uz 12059 df-fz 12709 df-fzo 12850 df-seq 13185 df-hash 13506 df-word 13673 df-concat 13734 df-s1 13759 df-substr 13804 df-pfx 13853 df-splice 13960 df-s2 14072 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-sca 16437 df-vsca 16438 df-ip 16439 df-tset 16440 df-ple 16441 df-ds 16443 df-0g 16571 df-gsum 16572 df-imas 16637 df-qus 16638 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-submnd 17804 df-frmd 17855 df-grp 17894 df-minusg 17895 df-efg 18593 df-frgp 18594 df-vrgp 18595 |
This theorem is referenced by: frgpup3 18664 |
Copyright terms: Public domain | W3C validator |