| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgpup2 | Structured version Visualization version GIF version | ||
| Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
| Ref | Expression |
|---|---|
| frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
| frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
| frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
| frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
| frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
| frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
| frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
| frgpup.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
| frgpup.y | ⊢ (𝜑 → 𝐴 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| frgpup2 | ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 2 | frgpup.y | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐼) | |
| 3 | frgpup.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 4 | frgpup.u | . . . . 5 ⊢ 𝑈 = (varFGrp‘𝐼) | |
| 5 | 3, 4 | vrgpval 19753 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
| 6 | 1, 2, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
| 7 | 6 | fveq2d 6885 | . 2 ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ )) |
| 8 | 0ex 5282 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 9 | 8 | prid1 4743 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1o} |
| 10 | df2o3 8493 | . . . . . . 7 ⊢ 2o = {∅, 1o} | |
| 11 | 9, 10 | eleqtrri 2834 | . . . . . 6 ⊢ ∅ ∈ 2o |
| 12 | opelxpi 5696 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) | |
| 13 | 2, 11, 12 | sylancl 586 | . . . . 5 ⊢ (𝜑 → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) |
| 14 | 13 | s1cld 14626 | . . . 4 ⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉 ∈ Word (𝐼 × 2o)) |
| 15 | frgpup.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 16 | 2on 8499 | . . . . . . 7 ⊢ 2o ∈ On | |
| 17 | xpexg 7749 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
| 18 | 1, 16, 17 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → (𝐼 × 2o) ∈ V) |
| 19 | wrdexg 14547 | . . . . . 6 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
| 20 | fvi 6960 | . . . . . 6 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
| 21 | 18, 19, 20 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
| 22 | 15, 21 | eqtrid 2783 | . . . 4 ⊢ (𝜑 → 𝑊 = Word (𝐼 × 2o)) |
| 23 | 14, 22 | eleqtrrd 2838 | . . 3 ⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉 ∈ 𝑊) |
| 24 | frgpup.b | . . . 4 ⊢ 𝐵 = (Base‘𝐻) | |
| 25 | frgpup.n | . . . 4 ⊢ 𝑁 = (invg‘𝐻) | |
| 26 | frgpup.t | . . . 4 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
| 27 | frgpup.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
| 28 | frgpup.a | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
| 29 | frgpup.g | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 30 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 31 | frgpup.e | . . . 4 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
| 32 | 24, 25, 26, 27, 1, 28, 15, 3, 29, 30, 31 | frgpupval 19760 | . . 3 ⊢ ((𝜑 ∧ 〈“〈𝐴, ∅〉”〉 ∈ 𝑊) → (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ ) = (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉))) |
| 33 | 23, 32 | mpdan 687 | . 2 ⊢ (𝜑 → (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ ) = (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉))) |
| 34 | 24, 25, 26, 27, 1, 28 | frgpuptf 19756 | . . . . . 6 ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
| 35 | s1co 14857 | . . . . . 6 ⊢ ((〈𝐴, ∅〉 ∈ (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝑇‘〈𝐴, ∅〉)”〉) | |
| 36 | 13, 34, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝑇‘〈𝐴, ∅〉)”〉) |
| 37 | df-ov 7413 | . . . . . . 7 ⊢ (𝐴𝑇∅) = (𝑇‘〈𝐴, ∅〉) | |
| 38 | iftrue 4511 | . . . . . . . . . 10 ⊢ (𝑧 = ∅ → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝑦)) | |
| 39 | fveq2 6881 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
| 40 | 38, 39 | sylan9eqr 2793 | . . . . . . . . 9 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = ∅) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝐴)) |
| 41 | fvex 6894 | . . . . . . . . 9 ⊢ (𝐹‘𝐴) ∈ V | |
| 42 | 40, 26, 41 | ovmpoa 7567 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → (𝐴𝑇∅) = (𝐹‘𝐴)) |
| 43 | 2, 11, 42 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → (𝐴𝑇∅) = (𝐹‘𝐴)) |
| 44 | 37, 43 | eqtr3id 2785 | . . . . . 6 ⊢ (𝜑 → (𝑇‘〈𝐴, ∅〉) = (𝐹‘𝐴)) |
| 45 | 44 | s1eqd 14624 | . . . . 5 ⊢ (𝜑 → 〈“(𝑇‘〈𝐴, ∅〉)”〉 = 〈“(𝐹‘𝐴)”〉) |
| 46 | 36, 45 | eqtrd 2771 | . . . 4 ⊢ (𝜑 → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝐹‘𝐴)”〉) |
| 47 | 46 | oveq2d 7426 | . . 3 ⊢ (𝜑 → (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉)) = (𝐻 Σg 〈“(𝐹‘𝐴)”〉)) |
| 48 | 28, 2 | ffvelcdmd 7080 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) |
| 49 | 24 | gsumws1 18821 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (𝐻 Σg 〈“(𝐹‘𝐴)”〉) = (𝐹‘𝐴)) |
| 50 | 48, 49 | syl 17 | . . 3 ⊢ (𝜑 → (𝐻 Σg 〈“(𝐹‘𝐴)”〉) = (𝐹‘𝐴)) |
| 51 | 47, 50 | eqtrd 2771 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉)) = (𝐹‘𝐴)) |
| 52 | 7, 33, 51 | 3eqtrd 2775 | 1 ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 ifcif 4505 {cpr 4608 〈cop 4612 ↦ cmpt 5206 I cid 5552 × cxp 5657 ran crn 5660 ∘ ccom 5663 Oncon0 6357 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 1oc1o 8478 2oc2o 8479 [cec 8722 Word cword 14536 〈“cs1 14618 Basecbs 17233 Σg cgsu 17459 Grpcgrp 18921 invgcminusg 18922 ~FG cefg 19692 freeGrpcfrgp 19693 varFGrpcvrgp 19694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-ec 8726 df-qs 8730 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-word 14537 df-concat 14594 df-s1 14619 df-substr 14664 df-pfx 14694 df-splice 14773 df-s2 14872 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-0g 17460 df-gsum 17461 df-imas 17527 df-qus 17528 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-frmd 18832 df-grp 18924 df-minusg 18925 df-efg 19695 df-frgp 19696 df-vrgp 19697 |
| This theorem is referenced by: frgpup3 19764 |
| Copyright terms: Public domain | W3C validator |