| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgpup2 | Structured version Visualization version GIF version | ||
| Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
| Ref | Expression |
|---|---|
| frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
| frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
| frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
| frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
| frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
| frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
| frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
| frgpup.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
| frgpup.y | ⊢ (𝜑 → 𝐴 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| frgpup2 | ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 2 | frgpup.y | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐼) | |
| 3 | frgpup.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 4 | frgpup.u | . . . . 5 ⊢ 𝑈 = (varFGrp‘𝐼) | |
| 5 | 3, 4 | vrgpval 19679 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
| 6 | 1, 2, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
| 7 | 6 | fveq2d 6826 | . 2 ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ )) |
| 8 | 0ex 5243 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 9 | 8 | prid1 4712 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1o} |
| 10 | df2o3 8393 | . . . . . . 7 ⊢ 2o = {∅, 1o} | |
| 11 | 9, 10 | eleqtrri 2830 | . . . . . 6 ⊢ ∅ ∈ 2o |
| 12 | opelxpi 5651 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) | |
| 13 | 2, 11, 12 | sylancl 586 | . . . . 5 ⊢ (𝜑 → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) |
| 14 | 13 | s1cld 14511 | . . . 4 ⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉 ∈ Word (𝐼 × 2o)) |
| 15 | frgpup.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 16 | 2on 8398 | . . . . . . 7 ⊢ 2o ∈ On | |
| 17 | xpexg 7683 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
| 18 | 1, 16, 17 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → (𝐼 × 2o) ∈ V) |
| 19 | wrdexg 14431 | . . . . . 6 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
| 20 | fvi 6898 | . . . . . 6 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
| 21 | 18, 19, 20 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
| 22 | 15, 21 | eqtrid 2778 | . . . 4 ⊢ (𝜑 → 𝑊 = Word (𝐼 × 2o)) |
| 23 | 14, 22 | eleqtrrd 2834 | . . 3 ⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉 ∈ 𝑊) |
| 24 | frgpup.b | . . . 4 ⊢ 𝐵 = (Base‘𝐻) | |
| 25 | frgpup.n | . . . 4 ⊢ 𝑁 = (invg‘𝐻) | |
| 26 | frgpup.t | . . . 4 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
| 27 | frgpup.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
| 28 | frgpup.a | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
| 29 | frgpup.g | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 30 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 31 | frgpup.e | . . . 4 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
| 32 | 24, 25, 26, 27, 1, 28, 15, 3, 29, 30, 31 | frgpupval 19686 | . . 3 ⊢ ((𝜑 ∧ 〈“〈𝐴, ∅〉”〉 ∈ 𝑊) → (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ ) = (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉))) |
| 33 | 23, 32 | mpdan 687 | . 2 ⊢ (𝜑 → (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ ) = (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉))) |
| 34 | 24, 25, 26, 27, 1, 28 | frgpuptf 19682 | . . . . . 6 ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
| 35 | s1co 14740 | . . . . . 6 ⊢ ((〈𝐴, ∅〉 ∈ (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝑇‘〈𝐴, ∅〉)”〉) | |
| 36 | 13, 34, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝑇‘〈𝐴, ∅〉)”〉) |
| 37 | df-ov 7349 | . . . . . . 7 ⊢ (𝐴𝑇∅) = (𝑇‘〈𝐴, ∅〉) | |
| 38 | iftrue 4478 | . . . . . . . . . 10 ⊢ (𝑧 = ∅ → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝑦)) | |
| 39 | fveq2 6822 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
| 40 | 38, 39 | sylan9eqr 2788 | . . . . . . . . 9 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = ∅) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝐴)) |
| 41 | fvex 6835 | . . . . . . . . 9 ⊢ (𝐹‘𝐴) ∈ V | |
| 42 | 40, 26, 41 | ovmpoa 7501 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → (𝐴𝑇∅) = (𝐹‘𝐴)) |
| 43 | 2, 11, 42 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → (𝐴𝑇∅) = (𝐹‘𝐴)) |
| 44 | 37, 43 | eqtr3id 2780 | . . . . . 6 ⊢ (𝜑 → (𝑇‘〈𝐴, ∅〉) = (𝐹‘𝐴)) |
| 45 | 44 | s1eqd 14509 | . . . . 5 ⊢ (𝜑 → 〈“(𝑇‘〈𝐴, ∅〉)”〉 = 〈“(𝐹‘𝐴)”〉) |
| 46 | 36, 45 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝐹‘𝐴)”〉) |
| 47 | 46 | oveq2d 7362 | . . 3 ⊢ (𝜑 → (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉)) = (𝐻 Σg 〈“(𝐹‘𝐴)”〉)) |
| 48 | 28, 2 | ffvelcdmd 7018 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) |
| 49 | 24 | gsumws1 18746 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (𝐻 Σg 〈“(𝐹‘𝐴)”〉) = (𝐹‘𝐴)) |
| 50 | 48, 49 | syl 17 | . . 3 ⊢ (𝜑 → (𝐻 Σg 〈“(𝐹‘𝐴)”〉) = (𝐹‘𝐴)) |
| 51 | 47, 50 | eqtrd 2766 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉)) = (𝐹‘𝐴)) |
| 52 | 7, 33, 51 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 ifcif 4472 {cpr 4575 〈cop 4579 ↦ cmpt 5170 I cid 5508 × cxp 5612 ran crn 5615 ∘ ccom 5618 Oncon0 6306 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1oc1o 8378 2oc2o 8379 [cec 8620 Word cword 14420 〈“cs1 14503 Basecbs 17120 Σg cgsu 17344 Grpcgrp 18846 invgcminusg 18847 ~FG cefg 19618 freeGrpcfrgp 19619 varFGrpcvrgp 19620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-0g 17345 df-gsum 17346 df-imas 17412 df-qus 17413 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-frmd 18757 df-grp 18849 df-minusg 18850 df-efg 19621 df-frgp 19622 df-vrgp 19623 |
| This theorem is referenced by: frgpup3 19690 |
| Copyright terms: Public domain | W3C validator |