| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgpup2 | Structured version Visualization version GIF version | ||
| Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
| Ref | Expression |
|---|---|
| frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
| frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
| frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
| frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
| frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
| frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
| frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
| frgpup.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
| frgpup.y | ⊢ (𝜑 → 𝐴 ∈ 𝐼) |
| Ref | Expression |
|---|---|
| frgpup2 | ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 2 | frgpup.y | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐼) | |
| 3 | frgpup.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 4 | frgpup.u | . . . . 5 ⊢ 𝑈 = (varFGrp‘𝐼) | |
| 5 | 3, 4 | vrgpval 19758 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
| 6 | 1, 2, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
| 7 | 6 | fveq2d 6891 | . 2 ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ )) |
| 8 | 0ex 5289 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 9 | 8 | prid1 4744 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1o} |
| 10 | df2o3 8497 | . . . . . . 7 ⊢ 2o = {∅, 1o} | |
| 11 | 9, 10 | eleqtrri 2832 | . . . . . 6 ⊢ ∅ ∈ 2o |
| 12 | opelxpi 5704 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) | |
| 13 | 2, 11, 12 | sylancl 586 | . . . . 5 ⊢ (𝜑 → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) |
| 14 | 13 | s1cld 14624 | . . . 4 ⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉 ∈ Word (𝐼 × 2o)) |
| 15 | frgpup.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 16 | 2on 8503 | . . . . . . 7 ⊢ 2o ∈ On | |
| 17 | xpexg 7753 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
| 18 | 1, 16, 17 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → (𝐼 × 2o) ∈ V) |
| 19 | wrdexg 14545 | . . . . . 6 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
| 20 | fvi 6966 | . . . . . 6 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
| 21 | 18, 19, 20 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
| 22 | 15, 21 | eqtrid 2781 | . . . 4 ⊢ (𝜑 → 𝑊 = Word (𝐼 × 2o)) |
| 23 | 14, 22 | eleqtrrd 2836 | . . 3 ⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉 ∈ 𝑊) |
| 24 | frgpup.b | . . . 4 ⊢ 𝐵 = (Base‘𝐻) | |
| 25 | frgpup.n | . . . 4 ⊢ 𝑁 = (invg‘𝐻) | |
| 26 | frgpup.t | . . . 4 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
| 27 | frgpup.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
| 28 | frgpup.a | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
| 29 | frgpup.g | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
| 30 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 31 | frgpup.e | . . . 4 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
| 32 | 24, 25, 26, 27, 1, 28, 15, 3, 29, 30, 31 | frgpupval 19765 | . . 3 ⊢ ((𝜑 ∧ 〈“〈𝐴, ∅〉”〉 ∈ 𝑊) → (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ ) = (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉))) |
| 33 | 23, 32 | mpdan 687 | . 2 ⊢ (𝜑 → (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ ) = (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉))) |
| 34 | 24, 25, 26, 27, 1, 28 | frgpuptf 19761 | . . . . . 6 ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
| 35 | s1co 14855 | . . . . . 6 ⊢ ((〈𝐴, ∅〉 ∈ (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝑇‘〈𝐴, ∅〉)”〉) | |
| 36 | 13, 34, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝑇‘〈𝐴, ∅〉)”〉) |
| 37 | df-ov 7417 | . . . . . . 7 ⊢ (𝐴𝑇∅) = (𝑇‘〈𝐴, ∅〉) | |
| 38 | iftrue 4513 | . . . . . . . . . 10 ⊢ (𝑧 = ∅ → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝑦)) | |
| 39 | fveq2 6887 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
| 40 | 38, 39 | sylan9eqr 2791 | . . . . . . . . 9 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = ∅) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝐴)) |
| 41 | fvex 6900 | . . . . . . . . 9 ⊢ (𝐹‘𝐴) ∈ V | |
| 42 | 40, 26, 41 | ovmpoa 7571 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → (𝐴𝑇∅) = (𝐹‘𝐴)) |
| 43 | 2, 11, 42 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → (𝐴𝑇∅) = (𝐹‘𝐴)) |
| 44 | 37, 43 | eqtr3id 2783 | . . . . . 6 ⊢ (𝜑 → (𝑇‘〈𝐴, ∅〉) = (𝐹‘𝐴)) |
| 45 | 44 | s1eqd 14622 | . . . . 5 ⊢ (𝜑 → 〈“(𝑇‘〈𝐴, ∅〉)”〉 = 〈“(𝐹‘𝐴)”〉) |
| 46 | 36, 45 | eqtrd 2769 | . . . 4 ⊢ (𝜑 → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝐹‘𝐴)”〉) |
| 47 | 46 | oveq2d 7430 | . . 3 ⊢ (𝜑 → (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉)) = (𝐻 Σg 〈“(𝐹‘𝐴)”〉)) |
| 48 | 28, 2 | ffvelcdmd 7086 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) |
| 49 | 24 | gsumws1 18825 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (𝐻 Σg 〈“(𝐹‘𝐴)”〉) = (𝐹‘𝐴)) |
| 50 | 48, 49 | syl 17 | . . 3 ⊢ (𝜑 → (𝐻 Σg 〈“(𝐹‘𝐴)”〉) = (𝐹‘𝐴)) |
| 51 | 47, 50 | eqtrd 2769 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉)) = (𝐹‘𝐴)) |
| 52 | 7, 33, 51 | 3eqtrd 2773 | 1 ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ∅c0 4315 ifcif 4507 {cpr 4610 〈cop 4614 ↦ cmpt 5207 I cid 5559 × cxp 5665 ran crn 5668 ∘ ccom 5671 Oncon0 6365 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 1oc1o 8482 2oc2o 8483 [cec 8726 Word cword 14535 〈“cs1 14616 Basecbs 17230 Σg cgsu 17461 Grpcgrp 18925 invgcminusg 18926 ~FG cefg 19697 freeGrpcfrgp 19698 varFGrpcvrgp 19699 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-ot 4617 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-ec 8730 df-qs 8734 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9465 df-inf 9466 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-fz 13531 df-fzo 13678 df-seq 14026 df-hash 14353 df-word 14536 df-concat 14592 df-s1 14617 df-substr 14662 df-pfx 14692 df-splice 14771 df-s2 14870 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-0g 17462 df-gsum 17463 df-imas 17529 df-qus 17530 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-frmd 18836 df-grp 18928 df-minusg 18929 df-efg 19700 df-frgp 19701 df-vrgp 19702 |
| This theorem is referenced by: frgpup3 19769 |
| Copyright terms: Public domain | W3C validator |