Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgpup2 | Structured version Visualization version GIF version |
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
Ref | Expression |
---|---|
frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
frgpup.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
frgpup.y | ⊢ (𝜑 → 𝐴 ∈ 𝐼) |
Ref | Expression |
---|---|
frgpup2 | ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
2 | frgpup.y | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐼) | |
3 | frgpup.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
4 | frgpup.u | . . . . 5 ⊢ 𝑈 = (varFGrp‘𝐼) | |
5 | 3, 4 | vrgpval 19373 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
6 | 1, 2, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
7 | 6 | fveq2d 6778 | . 2 ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ )) |
8 | 0ex 5231 | . . . . . . . 8 ⊢ ∅ ∈ V | |
9 | 8 | prid1 4698 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1o} |
10 | df2o3 8305 | . . . . . . 7 ⊢ 2o = {∅, 1o} | |
11 | 9, 10 | eleqtrri 2838 | . . . . . 6 ⊢ ∅ ∈ 2o |
12 | opelxpi 5626 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) | |
13 | 2, 11, 12 | sylancl 586 | . . . . 5 ⊢ (𝜑 → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) |
14 | 13 | s1cld 14308 | . . . 4 ⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉 ∈ Word (𝐼 × 2o)) |
15 | frgpup.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
16 | 2on 8311 | . . . . . . 7 ⊢ 2o ∈ On | |
17 | xpexg 7600 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
18 | 1, 16, 17 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → (𝐼 × 2o) ∈ V) |
19 | wrdexg 14227 | . . . . . 6 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
20 | fvi 6844 | . . . . . 6 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
21 | 18, 19, 20 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
22 | 15, 21 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → 𝑊 = Word (𝐼 × 2o)) |
23 | 14, 22 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉 ∈ 𝑊) |
24 | frgpup.b | . . . 4 ⊢ 𝐵 = (Base‘𝐻) | |
25 | frgpup.n | . . . 4 ⊢ 𝑁 = (invg‘𝐻) | |
26 | frgpup.t | . . . 4 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
27 | frgpup.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
28 | frgpup.a | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
29 | frgpup.g | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
30 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
31 | frgpup.e | . . . 4 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
32 | 24, 25, 26, 27, 1, 28, 15, 3, 29, 30, 31 | frgpupval 19380 | . . 3 ⊢ ((𝜑 ∧ 〈“〈𝐴, ∅〉”〉 ∈ 𝑊) → (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ ) = (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉))) |
33 | 23, 32 | mpdan 684 | . 2 ⊢ (𝜑 → (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ ) = (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉))) |
34 | 24, 25, 26, 27, 1, 28 | frgpuptf 19376 | . . . . . 6 ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
35 | s1co 14546 | . . . . . 6 ⊢ ((〈𝐴, ∅〉 ∈ (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝑇‘〈𝐴, ∅〉)”〉) | |
36 | 13, 34, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝑇‘〈𝐴, ∅〉)”〉) |
37 | df-ov 7278 | . . . . . . 7 ⊢ (𝐴𝑇∅) = (𝑇‘〈𝐴, ∅〉) | |
38 | iftrue 4465 | . . . . . . . . . 10 ⊢ (𝑧 = ∅ → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝑦)) | |
39 | fveq2 6774 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
40 | 38, 39 | sylan9eqr 2800 | . . . . . . . . 9 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = ∅) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝐴)) |
41 | fvex 6787 | . . . . . . . . 9 ⊢ (𝐹‘𝐴) ∈ V | |
42 | 40, 26, 41 | ovmpoa 7428 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → (𝐴𝑇∅) = (𝐹‘𝐴)) |
43 | 2, 11, 42 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → (𝐴𝑇∅) = (𝐹‘𝐴)) |
44 | 37, 43 | eqtr3id 2792 | . . . . . 6 ⊢ (𝜑 → (𝑇‘〈𝐴, ∅〉) = (𝐹‘𝐴)) |
45 | 44 | s1eqd 14306 | . . . . 5 ⊢ (𝜑 → 〈“(𝑇‘〈𝐴, ∅〉)”〉 = 〈“(𝐹‘𝐴)”〉) |
46 | 36, 45 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝐹‘𝐴)”〉) |
47 | 46 | oveq2d 7291 | . . 3 ⊢ (𝜑 → (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉)) = (𝐻 Σg 〈“(𝐹‘𝐴)”〉)) |
48 | 28, 2 | ffvelrnd 6962 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) |
49 | 24 | gsumws1 18476 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (𝐻 Σg 〈“(𝐹‘𝐴)”〉) = (𝐹‘𝐴)) |
50 | 48, 49 | syl 17 | . . 3 ⊢ (𝜑 → (𝐻 Σg 〈“(𝐹‘𝐴)”〉) = (𝐹‘𝐴)) |
51 | 47, 50 | eqtrd 2778 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉)) = (𝐹‘𝐴)) |
52 | 7, 33, 51 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ifcif 4459 {cpr 4563 〈cop 4567 ↦ cmpt 5157 I cid 5488 × cxp 5587 ran crn 5590 ∘ ccom 5593 Oncon0 6266 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 1oc1o 8290 2oc2o 8291 [cec 8496 Word cword 14217 〈“cs1 14300 Basecbs 16912 Σg cgsu 17151 Grpcgrp 18577 invgcminusg 18578 ~FG cefg 19312 freeGrpcfrgp 19313 varFGrpcvrgp 19314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-ec 8500 df-qs 8504 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-substr 14354 df-pfx 14384 df-splice 14463 df-s2 14561 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-0g 17152 df-gsum 17153 df-imas 17219 df-qus 17220 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-frmd 18488 df-grp 18580 df-minusg 18581 df-efg 19315 df-frgp 19316 df-vrgp 19317 |
This theorem is referenced by: frgpup3 19384 |
Copyright terms: Public domain | W3C validator |