MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup2 Structured version   Visualization version   GIF version

Theorem frgpup2 19688
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpup.r = ( ~FG𝐼)
frgpup.g 𝐺 = (freeGrp‘𝐼)
frgpup.x 𝑋 = (Base‘𝐺)
frgpup.e 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
frgpup.u 𝑈 = (varFGrp𝐼)
frgpup.y (𝜑𝐴𝐼)
Assertion
Ref Expression
frgpup2 (𝜑 → (𝐸‘(𝑈𝐴)) = (𝐹𝐴))
Distinct variable groups:   𝑦,𝑔,𝑧,𝐴   𝑔,𝐻   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝐵,𝑔,𝑦,𝑧   𝑇,𝑔   ,𝑔   𝜑,𝑔,𝑦,𝑧   𝑦,𝐼,𝑧   𝑔,𝑊
Allowed substitution hints:   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝑈(𝑦,𝑧,𝑔)   𝐸(𝑦,𝑧,𝑔)   𝐹(𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐻(𝑦,𝑧)   𝐼(𝑔)   𝑁(𝑔)   𝑉(𝑦,𝑧,𝑔)   𝑊(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem frgpup2
StepHypRef Expression
1 frgpup.i . . . 4 (𝜑𝐼𝑉)
2 frgpup.y . . . 4 (𝜑𝐴𝐼)
3 frgpup.r . . . . 5 = ( ~FG𝐼)
4 frgpup.u . . . . 5 𝑈 = (varFGrp𝐼)
53, 4vrgpval 19679 . . . 4 ((𝐼𝑉𝐴𝐼) → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
61, 2, 5syl2anc 584 . . 3 (𝜑 → (𝑈𝐴) = [⟨“⟨𝐴, ∅⟩”⟩] )
76fveq2d 6826 . 2 (𝜑 → (𝐸‘(𝑈𝐴)) = (𝐸‘[⟨“⟨𝐴, ∅⟩”⟩] ))
8 0ex 5243 . . . . . . . 8 ∅ ∈ V
98prid1 4712 . . . . . . 7 ∅ ∈ {∅, 1o}
10 df2o3 8393 . . . . . . 7 2o = {∅, 1o}
119, 10eleqtrri 2830 . . . . . 6 ∅ ∈ 2o
12 opelxpi 5651 . . . . . 6 ((𝐴𝐼 ∧ ∅ ∈ 2o) → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2o))
132, 11, 12sylancl 586 . . . . 5 (𝜑 → ⟨𝐴, ∅⟩ ∈ (𝐼 × 2o))
1413s1cld 14511 . . . 4 (𝜑 → ⟨“⟨𝐴, ∅⟩”⟩ ∈ Word (𝐼 × 2o))
15 frgpup.w . . . . 5 𝑊 = ( I ‘Word (𝐼 × 2o))
16 2on 8398 . . . . . . 7 2o ∈ On
17 xpexg 7683 . . . . . . 7 ((𝐼𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V)
181, 16, 17sylancl 586 . . . . . 6 (𝜑 → (𝐼 × 2o) ∈ V)
19 wrdexg 14431 . . . . . 6 ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V)
20 fvi 6898 . . . . . 6 (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2118, 19, 203syl 18 . . . . 5 (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o))
2215, 21eqtrid 2778 . . . 4 (𝜑𝑊 = Word (𝐼 × 2o))
2314, 22eleqtrrd 2834 . . 3 (𝜑 → ⟨“⟨𝐴, ∅⟩”⟩ ∈ 𝑊)
24 frgpup.b . . . 4 𝐵 = (Base‘𝐻)
25 frgpup.n . . . 4 𝑁 = (invg𝐻)
26 frgpup.t . . . 4 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
27 frgpup.h . . . 4 (𝜑𝐻 ∈ Grp)
28 frgpup.a . . . 4 (𝜑𝐹:𝐼𝐵)
29 frgpup.g . . . 4 𝐺 = (freeGrp‘𝐼)
30 frgpup.x . . . 4 𝑋 = (Base‘𝐺)
31 frgpup.e . . . 4 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
3224, 25, 26, 27, 1, 28, 15, 3, 29, 30, 31frgpupval 19686 . . 3 ((𝜑 ∧ ⟨“⟨𝐴, ∅⟩”⟩ ∈ 𝑊) → (𝐸‘[⟨“⟨𝐴, ∅⟩”⟩] ) = (𝐻 Σg (𝑇 ∘ ⟨“⟨𝐴, ∅⟩”⟩)))
3323, 32mpdan 687 . 2 (𝜑 → (𝐸‘[⟨“⟨𝐴, ∅⟩”⟩] ) = (𝐻 Σg (𝑇 ∘ ⟨“⟨𝐴, ∅⟩”⟩)))
3424, 25, 26, 27, 1, 28frgpuptf 19682 . . . . . 6 (𝜑𝑇:(𝐼 × 2o)⟶𝐵)
35 s1co 14740 . . . . . 6 ((⟨𝐴, ∅⟩ ∈ (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ ⟨“⟨𝐴, ∅⟩”⟩) = ⟨“(𝑇‘⟨𝐴, ∅⟩)”⟩)
3613, 34, 35syl2anc 584 . . . . 5 (𝜑 → (𝑇 ∘ ⟨“⟨𝐴, ∅⟩”⟩) = ⟨“(𝑇‘⟨𝐴, ∅⟩)”⟩)
37 df-ov 7349 . . . . . . 7 (𝐴𝑇∅) = (𝑇‘⟨𝐴, ∅⟩)
38 iftrue 4478 . . . . . . . . . 10 (𝑧 = ∅ → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) = (𝐹𝑦))
39 fveq2 6822 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
4038, 39sylan9eqr 2788 . . . . . . . . 9 ((𝑦 = 𝐴𝑧 = ∅) → if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))) = (𝐹𝐴))
41 fvex 6835 . . . . . . . . 9 (𝐹𝐴) ∈ V
4240, 26, 41ovmpoa 7501 . . . . . . . 8 ((𝐴𝐼 ∧ ∅ ∈ 2o) → (𝐴𝑇∅) = (𝐹𝐴))
432, 11, 42sylancl 586 . . . . . . 7 (𝜑 → (𝐴𝑇∅) = (𝐹𝐴))
4437, 43eqtr3id 2780 . . . . . 6 (𝜑 → (𝑇‘⟨𝐴, ∅⟩) = (𝐹𝐴))
4544s1eqd 14509 . . . . 5 (𝜑 → ⟨“(𝑇‘⟨𝐴, ∅⟩)”⟩ = ⟨“(𝐹𝐴)”⟩)
4636, 45eqtrd 2766 . . . 4 (𝜑 → (𝑇 ∘ ⟨“⟨𝐴, ∅⟩”⟩) = ⟨“(𝐹𝐴)”⟩)
4746oveq2d 7362 . . 3 (𝜑 → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝐴, ∅⟩”⟩)) = (𝐻 Σg ⟨“(𝐹𝐴)”⟩))
4828, 2ffvelcdmd 7018 . . . 4 (𝜑 → (𝐹𝐴) ∈ 𝐵)
4924gsumws1 18746 . . . 4 ((𝐹𝐴) ∈ 𝐵 → (𝐻 Σg ⟨“(𝐹𝐴)”⟩) = (𝐹𝐴))
5048, 49syl 17 . . 3 (𝜑 → (𝐻 Σg ⟨“(𝐹𝐴)”⟩) = (𝐹𝐴))
5147, 50eqtrd 2766 . 2 (𝜑 → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝐴, ∅⟩”⟩)) = (𝐹𝐴))
527, 33, 513eqtrd 2770 1 (𝜑 → (𝐸‘(𝑈𝐴)) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  c0 4280  ifcif 4472  {cpr 4575  cop 4579  cmpt 5170   I cid 5508   × cxp 5612  ran crn 5615  ccom 5618  Oncon0 6306  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  1oc1o 8378  2oc2o 8379  [cec 8620  Word cword 14420  ⟨“cs1 14503  Basecbs 17120   Σg cgsu 17344  Grpcgrp 18846  invgcminusg 18847   ~FG cefg 19618  freeGrpcfrgp 19619  varFGrpcvrgp 19620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-splice 14657  df-s2 14755  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-gsum 17346  df-imas 17412  df-qus 17413  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-frmd 18757  df-grp 18849  df-minusg 18850  df-efg 19621  df-frgp 19622  df-vrgp 19623
This theorem is referenced by:  frgpup3  19690
  Copyright terms: Public domain W3C validator