Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgpup2 | Structured version Visualization version GIF version |
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) |
Ref | Expression |
---|---|
frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
frgpup.u | ⊢ 𝑈 = (varFGrp‘𝐼) |
frgpup.y | ⊢ (𝜑 → 𝐴 ∈ 𝐼) |
Ref | Expression |
---|---|
frgpup2 | ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
2 | frgpup.y | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐼) | |
3 | frgpup.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
4 | frgpup.u | . . . . 5 ⊢ 𝑈 = (varFGrp‘𝐼) | |
5 | 3, 4 | vrgpval 19288 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
6 | 1, 2, 5 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑈‘𝐴) = [〈“〈𝐴, ∅〉”〉] ∼ ) |
7 | 6 | fveq2d 6760 | . 2 ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ )) |
8 | 0ex 5226 | . . . . . . . 8 ⊢ ∅ ∈ V | |
9 | 8 | prid1 4695 | . . . . . . 7 ⊢ ∅ ∈ {∅, 1o} |
10 | df2o3 8282 | . . . . . . 7 ⊢ 2o = {∅, 1o} | |
11 | 9, 10 | eleqtrri 2838 | . . . . . 6 ⊢ ∅ ∈ 2o |
12 | opelxpi 5617 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) | |
13 | 2, 11, 12 | sylancl 585 | . . . . 5 ⊢ (𝜑 → 〈𝐴, ∅〉 ∈ (𝐼 × 2o)) |
14 | 13 | s1cld 14236 | . . . 4 ⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉 ∈ Word (𝐼 × 2o)) |
15 | frgpup.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
16 | 2on 8275 | . . . . . . 7 ⊢ 2o ∈ On | |
17 | xpexg 7578 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 2o ∈ On) → (𝐼 × 2o) ∈ V) | |
18 | 1, 16, 17 | sylancl 585 | . . . . . 6 ⊢ (𝜑 → (𝐼 × 2o) ∈ V) |
19 | wrdexg 14155 | . . . . . 6 ⊢ ((𝐼 × 2o) ∈ V → Word (𝐼 × 2o) ∈ V) | |
20 | fvi 6826 | . . . . . 6 ⊢ (Word (𝐼 × 2o) ∈ V → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) | |
21 | 18, 19, 20 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ( I ‘Word (𝐼 × 2o)) = Word (𝐼 × 2o)) |
22 | 15, 21 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → 𝑊 = Word (𝐼 × 2o)) |
23 | 14, 22 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 〈“〈𝐴, ∅〉”〉 ∈ 𝑊) |
24 | frgpup.b | . . . 4 ⊢ 𝐵 = (Base‘𝐻) | |
25 | frgpup.n | . . . 4 ⊢ 𝑁 = (invg‘𝐻) | |
26 | frgpup.t | . . . 4 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
27 | frgpup.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
28 | frgpup.a | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
29 | frgpup.g | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
30 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
31 | frgpup.e | . . . 4 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
32 | 24, 25, 26, 27, 1, 28, 15, 3, 29, 30, 31 | frgpupval 19295 | . . 3 ⊢ ((𝜑 ∧ 〈“〈𝐴, ∅〉”〉 ∈ 𝑊) → (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ ) = (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉))) |
33 | 23, 32 | mpdan 683 | . 2 ⊢ (𝜑 → (𝐸‘[〈“〈𝐴, ∅〉”〉] ∼ ) = (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉))) |
34 | 24, 25, 26, 27, 1, 28 | frgpuptf 19291 | . . . . . 6 ⊢ (𝜑 → 𝑇:(𝐼 × 2o)⟶𝐵) |
35 | s1co 14474 | . . . . . 6 ⊢ ((〈𝐴, ∅〉 ∈ (𝐼 × 2o) ∧ 𝑇:(𝐼 × 2o)⟶𝐵) → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝑇‘〈𝐴, ∅〉)”〉) | |
36 | 13, 34, 35 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝑇‘〈𝐴, ∅〉)”〉) |
37 | df-ov 7258 | . . . . . . 7 ⊢ (𝐴𝑇∅) = (𝑇‘〈𝐴, ∅〉) | |
38 | iftrue 4462 | . . . . . . . . . 10 ⊢ (𝑧 = ∅ → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝑦)) | |
39 | fveq2 6756 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) | |
40 | 38, 39 | sylan9eqr 2801 | . . . . . . . . 9 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = ∅) → if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦))) = (𝐹‘𝐴)) |
41 | fvex 6769 | . . . . . . . . 9 ⊢ (𝐹‘𝐴) ∈ V | |
42 | 40, 26, 41 | ovmpoa 7406 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝐼 ∧ ∅ ∈ 2o) → (𝐴𝑇∅) = (𝐹‘𝐴)) |
43 | 2, 11, 42 | sylancl 585 | . . . . . . 7 ⊢ (𝜑 → (𝐴𝑇∅) = (𝐹‘𝐴)) |
44 | 37, 43 | eqtr3id 2793 | . . . . . 6 ⊢ (𝜑 → (𝑇‘〈𝐴, ∅〉) = (𝐹‘𝐴)) |
45 | 44 | s1eqd 14234 | . . . . 5 ⊢ (𝜑 → 〈“(𝑇‘〈𝐴, ∅〉)”〉 = 〈“(𝐹‘𝐴)”〉) |
46 | 36, 45 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → (𝑇 ∘ 〈“〈𝐴, ∅〉”〉) = 〈“(𝐹‘𝐴)”〉) |
47 | 46 | oveq2d 7271 | . . 3 ⊢ (𝜑 → (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉)) = (𝐻 Σg 〈“(𝐹‘𝐴)”〉)) |
48 | 28, 2 | ffvelrnd 6944 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) |
49 | 24 | gsumws1 18391 | . . . 4 ⊢ ((𝐹‘𝐴) ∈ 𝐵 → (𝐻 Σg 〈“(𝐹‘𝐴)”〉) = (𝐹‘𝐴)) |
50 | 48, 49 | syl 17 | . . 3 ⊢ (𝜑 → (𝐻 Σg 〈“(𝐹‘𝐴)”〉) = (𝐹‘𝐴)) |
51 | 47, 50 | eqtrd 2778 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝑇 ∘ 〈“〈𝐴, ∅〉”〉)) = (𝐹‘𝐴)) |
52 | 7, 33, 51 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝐸‘(𝑈‘𝐴)) = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ifcif 4456 {cpr 4560 〈cop 4564 ↦ cmpt 5153 I cid 5479 × cxp 5578 ran crn 5581 ∘ ccom 5584 Oncon0 6251 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1oc1o 8260 2oc2o 8261 [cec 8454 Word cword 14145 〈“cs1 14228 Basecbs 16840 Σg cgsu 17068 Grpcgrp 18492 invgcminusg 18493 ~FG cefg 19227 freeGrpcfrgp 19228 varFGrpcvrgp 19229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-splice 14391 df-s2 14489 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-gsum 17070 df-imas 17136 df-qus 17137 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-frmd 18403 df-grp 18495 df-minusg 18496 df-efg 19230 df-frgp 19231 df-vrgp 19232 |
This theorem is referenced by: frgpup3 19299 |
Copyright terms: Public domain | W3C validator |