![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsabs | Structured version Visualization version GIF version |
Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
setsabs | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsres 17225 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |
3 | 2 | uneq1d 4190 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
4 | ovexd 7483 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) | |
5 | setsval 17214 | . . 3 ⊢ (((𝑆 sSet 〈𝐴, 𝐵〉) ∈ V ∧ 𝐶 ∈ 𝑊) → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | |
6 | 4, 5 | sylan 579 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
7 | setsval 17214 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐶〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | |
8 | 3, 6, 7 | 3eqtr4d 2790 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 {csn 4648 〈cop 4654 ↾ cres 5702 (class class class)co 7448 sSet csts 17210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-sets 17211 |
This theorem is referenced by: ressress 17307 rescabs 17896 rescabsOLD 17897 opprabs 33475 |
Copyright terms: Public domain | W3C validator |