MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsabs Structured version   Visualization version   GIF version

Theorem setsabs 17222
Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
setsabs ((𝑆𝑉𝐶𝑊) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩))

Proof of Theorem setsabs
StepHypRef Expression
1 setsres 17221 . . . 4 (𝑆𝑉 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
21adantr 480 . . 3 ((𝑆𝑉𝐶𝑊) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
32uneq1d 4180 . 2 ((𝑆𝑉𝐶𝑊) → (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
4 ovexd 7473 . . 3 (𝑆𝑉 → (𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V)
5 setsval 17210 . . 3 (((𝑆 sSet ⟨𝐴, 𝐵⟩) ∈ V ∧ 𝐶𝑊) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
64, 5sylan 580 . 2 ((𝑆𝑉𝐶𝑊) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
7 setsval 17210 . 2 ((𝑆𝑉𝐶𝑊) → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
83, 6, 73eqtr4d 2787 1 ((𝑆𝑉𝐶𝑊) → ((𝑆 sSet ⟨𝐴, 𝐵⟩) sSet ⟨𝐴, 𝐶⟩) = (𝑆 sSet ⟨𝐴, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3481  cdif 3963  cun 3964  {csn 4634  cop 4640  cres 5695  (class class class)co 7438   sSet csts 17206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-res 5705  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-sets 17207
This theorem is referenced by:  ressress  17303  rescabs  17892  rescabsOLD  17893  opprabs  33522
  Copyright terms: Public domain W3C validator