![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsabs | Structured version Visualization version GIF version |
Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
setsabs | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsres 17221 | . . . 4 ⊢ (𝑆 ∈ 𝑉 → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) |
3 | 2 | uneq1d 4180 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
4 | ovexd 7473 | . . 3 ⊢ (𝑆 ∈ 𝑉 → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) | |
5 | setsval 17210 | . . 3 ⊢ (((𝑆 sSet 〈𝐴, 𝐵〉) ∈ V ∧ 𝐶 ∈ 𝑊) → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | |
6 | 4, 5 | sylan 580 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) |
7 | setsval 17210 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐶〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐶〉})) | |
8 | 3, 6, 7 | 3eqtr4d 2787 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ∖ cdif 3963 ∪ cun 3964 {csn 4634 〈cop 4640 ↾ cres 5695 (class class class)co 7438 sSet csts 17206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-res 5705 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-sets 17207 |
This theorem is referenced by: ressress 17303 rescabs 17892 rescabsOLD 17893 opprabs 33522 |
Copyright terms: Public domain | W3C validator |