MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescabsOLD Structured version   Visualization version   GIF version

Theorem rescabsOLD 17593
Description: Obsolete proof of seqp1d 13784 as of 10-Nov-2024. Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
rescabs.c (𝜑𝐶𝑉)
rescabs.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescabs.j (𝜑𝐽 Fn (𝑇 × 𝑇))
rescabs.s (𝜑𝑆𝑊)
rescabs.t (𝜑𝑇𝑆)
Assertion
Ref Expression
rescabsOLD (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))

Proof of Theorem rescabsOLD
StepHypRef Expression
1 eqid 2736 . . . 4 (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽)
2 ovexd 7342 . . . 4 (𝜑 → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
3 rescabs.s . . . . 5 (𝜑𝑆𝑊)
4 rescabs.t . . . . 5 (𝜑𝑇𝑆)
53, 4ssexd 5257 . . . 4 (𝜑𝑇 ∈ V)
6 rescabs.j . . . 4 (𝜑𝐽 Fn (𝑇 × 𝑇))
71, 2, 5, 6rescval2 17585 . . 3 (𝜑 → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
8 simpr 486 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (Base‘(𝐶s 𝑆)) ⊆ 𝑇)
9 ovexd 7342 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
105adantr 482 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇 ∈ V)
11 eqid 2736 . . . . . . . 8 (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇)
12 baseid 16960 . . . . . . . . 9 Base = Slot (Base‘ndx)
13 1re 11021 . . . . . . . . . . 11 1 ∈ ℝ
14 1nn 12030 . . . . . . . . . . . 12 1 ∈ ℕ
15 4nn0 12298 . . . . . . . . . . . 12 4 ∈ ℕ0
16 1nn0 12295 . . . . . . . . . . . 12 1 ∈ ℕ0
17 1lt10 12622 . . . . . . . . . . . 12 1 < 10
1814, 15, 16, 17declti 12521 . . . . . . . . . . 11 1 < 14
1913, 18ltneii 11134 . . . . . . . . . 10 1 ≠ 14
20 basendx 16966 . . . . . . . . . . 11 (Base‘ndx) = 1
21 homndx 17166 . . . . . . . . . . 11 (Hom ‘ndx) = 14
2220, 21neeq12i 3008 . . . . . . . . . 10 ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ 14)
2319, 22mpbir 230 . . . . . . . . 9 (Base‘ndx) ≠ (Hom ‘ndx)
2412, 23setsnid 16955 . . . . . . . 8 (Base‘(𝐶s 𝑆)) = (Base‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
2511, 24ressid2 16990 . . . . . . 7 (((Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V ∧ 𝑇 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
268, 9, 10, 25syl3anc 1371 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
2726oveq1d 7322 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩))
28 ovex 7340 . . . . . 6 (𝐶s 𝑆) ∈ V
295, 5xpexd 7633 . . . . . . . 8 (𝜑 → (𝑇 × 𝑇) ∈ V)
30 fnex 7125 . . . . . . . 8 ((𝐽 Fn (𝑇 × 𝑇) ∧ (𝑇 × 𝑇) ∈ V) → 𝐽 ∈ V)
316, 29, 30syl2anc 585 . . . . . . 7 (𝜑𝐽 ∈ V)
3231adantr 482 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐽 ∈ V)
33 setsabs 16925 . . . . . 6 (((𝐶s 𝑆) ∈ V ∧ 𝐽 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩))
3428, 32, 33sylancr 588 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩))
35 eqid 2736 . . . . . . . . . . . . . 14 (𝐶s 𝑆) = (𝐶s 𝑆)
36 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘𝐶)
3735, 36ressbas 16992 . . . . . . . . . . . . 13 (𝑆𝑊 → (𝑆 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑆)))
383, 37syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∩ (Base‘𝐶)) = (Base‘(𝐶s 𝑆)))
3938sseq1d 3957 . . . . . . . . . . 11 (𝜑 → ((𝑆 ∩ (Base‘𝐶)) ⊆ 𝑇 ↔ (Base‘(𝐶s 𝑆)) ⊆ 𝑇))
4039biimpar 479 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ 𝑇)
41 inss2 4169 . . . . . . . . . . 11 (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶)
4241a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ (Base‘𝐶))
4340, 42ssind 4172 . . . . . . . . 9 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) ⊆ (𝑇 ∩ (Base‘𝐶)))
444adantr 482 . . . . . . . . . 10 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇𝑆)
4544ssrind 4175 . . . . . . . . 9 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑇 ∩ (Base‘𝐶)) ⊆ (𝑆 ∩ (Base‘𝐶)))
4643, 45eqssd 3943 . . . . . . . 8 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑆 ∩ (Base‘𝐶)) = (𝑇 ∩ (Base‘𝐶)))
4746oveq2d 7323 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s (𝑆 ∩ (Base‘𝐶))) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
483adantr 482 . . . . . . . 8 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑆𝑊)
4936ressinbas 17000 . . . . . . . 8 (𝑆𝑊 → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
5048, 49syl 17 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) = (𝐶s (𝑆 ∩ (Base‘𝐶))))
5136ressinbas 17000 . . . . . . . 8 (𝑇 ∈ V → (𝐶s 𝑇) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
5210, 51syl 17 . . . . . . 7 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑇) = (𝐶s (𝑇 ∩ (Base‘𝐶))))
5347, 50, 523eqtr4d 2786 . . . . . 6 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) = (𝐶s 𝑇))
5453oveq1d 7322 . . . . 5 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
5527, 34, 543eqtrd 2780 . . . 4 ((𝜑 ∧ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
56 simpr 486 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇)
57 ovexd 7342 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V)
585adantr 482 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇 ∈ V)
5911, 24ressval2 16991 . . . . . . . 8 ((¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ∈ V ∧ 𝑇 ∈ V) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
6056, 57, 58, 59syl3anc 1371 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
61 ovexd 7342 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝐶s 𝑆) ∈ V)
6223necomi 2996 . . . . . . . . 9 (Hom ‘ndx) ≠ (Base‘ndx)
6362a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (Hom ‘ndx) ≠ (Base‘ndx))
64 rescabs.h . . . . . . . . . 10 (𝜑𝐻 Fn (𝑆 × 𝑆))
653, 3xpexd 7633 . . . . . . . . . 10 (𝜑 → (𝑆 × 𝑆) ∈ V)
66 fnex 7125 . . . . . . . . . 10 ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V)
6764, 65, 66syl2anc 585 . . . . . . . . 9 (𝜑𝐻 ∈ V)
6867adantr 482 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐻 ∈ V)
69 fvex 6817 . . . . . . . . . 10 (Base‘(𝐶s 𝑆)) ∈ V
7069inex2 5251 . . . . . . . . 9 (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V
7170a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V)
72 fvex 6817 . . . . . . . . 9 (Hom ‘ndx) ∈ V
73 fvex 6817 . . . . . . . . 9 (Base‘ndx) ∈ V
7472, 73setscom 16926 . . . . . . . 8 ((((𝐶s 𝑆) ∈ V ∧ (Hom ‘ndx) ≠ (Base‘ndx)) ∧ (𝐻 ∈ V ∧ (𝑇 ∩ (Base‘(𝐶s 𝑆))) ∈ V)) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩))
7561, 63, 68, 71, 74syl22anc 837 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩))
76 eqid 2736 . . . . . . . . . . 11 ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) ↾s 𝑇)
77 eqid 2736 . . . . . . . . . . 11 (Base‘(𝐶s 𝑆)) = (Base‘(𝐶s 𝑆))
7876, 77ressval2 16991 . . . . . . . . . 10 ((¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇 ∧ (𝐶s 𝑆) ∈ V ∧ 𝑇 ∈ V) → ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
7956, 61, 58, 78syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) ↾s 𝑇) = ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩))
803adantr 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑆𝑊)
814adantr 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝑇𝑆)
82 ressabs 17004 . . . . . . . . . 10 ((𝑆𝑊𝑇𝑆) → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
8380, 81, 82syl2anc 585 . . . . . . . . 9 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
8479, 83eqtr3d 2778 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) = (𝐶s 𝑇))
8584oveq1d 7322 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Base‘ndx), (𝑇 ∩ (Base‘(𝐶s 𝑆)))⟩) sSet ⟨(Hom ‘ndx), 𝐻⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩))
8660, 75, 853eqtrd 2780 . . . . . 6 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩))
8786oveq1d 7322 . . . . 5 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩))
88 ovex 7340 . . . . . 6 (𝐶s 𝑇) ∈ V
8931adantr 482 . . . . . 6 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → 𝐽 ∈ V)
90 setsabs 16925 . . . . . 6 (((𝐶s 𝑇) ∈ V ∧ 𝐽 ∈ V) → (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
9188, 89, 90sylancr 588 . . . . 5 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → (((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐻⟩) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
9287, 91eqtrd 2776 . . . 4 ((𝜑 ∧ ¬ (Base‘(𝐶s 𝑆)) ⊆ 𝑇) → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
9355, 92pm2.61dan 811 . . 3 (𝜑 → ((((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
947, 93eqtrd 2776 . 2 (𝜑 → (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
95 eqid 2736 . . . 4 (𝐶cat 𝐻) = (𝐶cat 𝐻)
96 rescabs.c . . . 4 (𝜑𝐶𝑉)
9795, 96, 3, 64rescval2 17585 . . 3 (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
9897oveq1d 7322 . 2 (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩) ↾cat 𝐽))
99 eqid 2736 . . 3 (𝐶cat 𝐽) = (𝐶cat 𝐽)
10099, 96, 5, 6rescval2 17585 . 2 (𝜑 → (𝐶cat 𝐽) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
10194, 98, 1003eqtr4d 2786 1 (𝜑 → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1539  wcel 2104  wne 2941  Vcvv 3437  cin 3891  wss 3892  cop 4571   × cxp 5598   Fn wfn 6453  cfv 6458  (class class class)co 7307  1c1 10918  4c4 12076  cdc 12483   sSet csts 16909  ndxcnx 16939  Basecbs 16957  s cress 16986  Hom chom 17018  cat cresc 17565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-dec 12484  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-hom 17031  df-resc 17568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator