HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shjcomi Structured version   Visualization version   GIF version

Theorem shjcomi 29452
Description: Commutative law for join in S. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
shincl.1 𝐴S
shincl.2 𝐵S
Assertion
Ref Expression
shjcomi (𝐴 𝐵) = (𝐵 𝐴)

Proof of Theorem shjcomi
StepHypRef Expression
1 shincl.1 . 2 𝐴S
2 shincl.2 . 2 𝐵S
3 shjcom 29439 . 2 ((𝐴S𝐵S ) → (𝐴 𝐵) = (𝐵 𝐴))
41, 2, 3mp2an 692 1 (𝐴 𝐵) = (𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2110  (class class class)co 7213   S csh 29009   chj 29014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-hilex 29080
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-sh 29288  df-chj 29391
This theorem is referenced by:  shlej2i  29460  chjcomi  29549
  Copyright terms: Public domain W3C validator