Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shlej2i | Structured version Visualization version GIF version |
Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl.1 | ⊢ 𝐴 ∈ Sℋ |
shincl.2 | ⊢ 𝐵 ∈ Sℋ |
shless.1 | ⊢ 𝐶 ∈ Sℋ |
Ref | Expression |
---|---|
shlej2i | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∨ℋ 𝐴) ⊆ (𝐶 ∨ℋ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | . . 3 ⊢ 𝐴 ∈ Sℋ | |
2 | shincl.2 | . . 3 ⊢ 𝐵 ∈ Sℋ | |
3 | shless.1 | . . 3 ⊢ 𝐶 ∈ Sℋ | |
4 | 1, 2, 3 | shlej1i 29768 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) |
5 | 3, 1 | shjcomi 29761 | . 2 ⊢ (𝐶 ∨ℋ 𝐴) = (𝐴 ∨ℋ 𝐶) |
6 | 3, 2 | shjcomi 29761 | . 2 ⊢ (𝐶 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐶) |
7 | 4, 5, 6 | 3sstr4g 3968 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∨ℋ 𝐴) ⊆ (𝐶 ∨ℋ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2101 ⊆ wss 3889 (class class class)co 7295 Sℋ csh 29318 ∨ℋ chj 29323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-hilex 29389 ax-hfvadd 29390 ax-hv0cl 29393 ax-hfvmul 29395 ax-hvmul0 29400 ax-hfi 29469 ax-his2 29473 ax-his3 29474 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-po 5505 df-so 5506 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-oprab 7299 df-mpo 7300 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-ltxr 11042 df-sh 29597 df-oc 29642 df-chj 29700 |
This theorem is referenced by: chlej2i 29864 5oai 30051 3oalem6 30057 |
Copyright terms: Public domain | W3C validator |