| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shlej2i | Structured version Visualization version GIF version | ||
| Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shincl.1 | ⊢ 𝐴 ∈ Sℋ |
| shincl.2 | ⊢ 𝐵 ∈ Sℋ |
| shless.1 | ⊢ 𝐶 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shlej2i | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∨ℋ 𝐴) ⊆ (𝐶 ∨ℋ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shincl.1 | . . 3 ⊢ 𝐴 ∈ Sℋ | |
| 2 | shincl.2 | . . 3 ⊢ 𝐵 ∈ Sℋ | |
| 3 | shless.1 | . . 3 ⊢ 𝐶 ∈ Sℋ | |
| 4 | 1, 2, 3 | shlej1i 31305 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∨ℋ 𝐶) ⊆ (𝐵 ∨ℋ 𝐶)) |
| 5 | 3, 1 | shjcomi 31298 | . 2 ⊢ (𝐶 ∨ℋ 𝐴) = (𝐴 ∨ℋ 𝐶) |
| 6 | 3, 2 | shjcomi 31298 | . 2 ⊢ (𝐶 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐶) |
| 7 | 4, 5, 6 | 3sstr4g 4012 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∨ℋ 𝐴) ⊆ (𝐶 ∨ℋ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3926 (class class class)co 7403 Sℋ csh 30855 ∨ℋ chj 30860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-hilex 30926 ax-hfvadd 30927 ax-hv0cl 30930 ax-hfvmul 30932 ax-hvmul0 30937 ax-hfi 31006 ax-his2 31010 ax-his3 31011 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 df-sh 31134 df-oc 31179 df-chj 31237 |
| This theorem is referenced by: chlej2i 31401 5oai 31588 3oalem6 31594 |
| Copyright terms: Public domain | W3C validator |