HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shlej2i Structured version   Visualization version   GIF version

Theorem shlej2i 29160
Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
shincl.1 𝐴S
shincl.2 𝐵S
shless.1 𝐶S
Assertion
Ref Expression
shlej2i (𝐴𝐵 → (𝐶 𝐴) ⊆ (𝐶 𝐵))

Proof of Theorem shlej2i
StepHypRef Expression
1 shincl.1 . . 3 𝐴S
2 shincl.2 . . 3 𝐵S
3 shless.1 . . 3 𝐶S
41, 2, 3shlej1i 29159 . 2 (𝐴𝐵 → (𝐴 𝐶) ⊆ (𝐵 𝐶))
53, 1shjcomi 29152 . 2 (𝐶 𝐴) = (𝐴 𝐶)
63, 2shjcomi 29152 . 2 (𝐶 𝐵) = (𝐵 𝐶)
74, 5, 63sstr4g 3987 1 (𝐴𝐵 → (𝐶 𝐴) ⊆ (𝐶 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  wss 3908  (class class class)co 7140   S csh 28709   chj 28714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-hilex 28780  ax-hfvadd 28781  ax-hv0cl 28784  ax-hfvmul 28786  ax-hvmul0 28791  ax-hfi 28860  ax-his2 28864  ax-his3 28865
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sh 28988  df-oc 29033  df-chj 29091
This theorem is referenced by:  chlej2i  29255  5oai  29442  3oalem6  29448
  Copyright terms: Public domain W3C validator