HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shlej2i Structured version   Visualization version   GIF version

Theorem shlej2i 29155
Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
shincl.1 𝐴S
shincl.2 𝐵S
shless.1 𝐶S
Assertion
Ref Expression
shlej2i (𝐴𝐵 → (𝐶 𝐴) ⊆ (𝐶 𝐵))

Proof of Theorem shlej2i
StepHypRef Expression
1 shincl.1 . . 3 𝐴S
2 shincl.2 . . 3 𝐵S
3 shless.1 . . 3 𝐶S
41, 2, 3shlej1i 29154 . 2 (𝐴𝐵 → (𝐴 𝐶) ⊆ (𝐵 𝐶))
53, 1shjcomi 29147 . 2 (𝐶 𝐴) = (𝐴 𝐶)
63, 2shjcomi 29147 . 2 (𝐶 𝐵) = (𝐵 𝐶)
74, 5, 63sstr4g 4011 1 (𝐴𝐵 → (𝐶 𝐴) ⊆ (𝐶 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  wss 3935  (class class class)co 7155   S csh 28704   chj 28709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-hilex 28775  ax-hfvadd 28776  ax-hv0cl 28779  ax-hfvmul 28781  ax-hvmul0 28786  ax-hfi 28855  ax-his2 28859  ax-his3 28860
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-ltxr 10679  df-sh 28983  df-oc 29028  df-chj 29086
This theorem is referenced by:  chlej2i  29250  5oai  29437  3oalem6  29443
  Copyright terms: Public domain W3C validator