![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shjcom | Structured version Visualization version GIF version |
Description: Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shjcom | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shjval 31383 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
2 | shjval 31383 | . . . 4 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐵 ∪ 𝐴)))) | |
3 | 2 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐵 ∪ 𝐴)))) |
4 | uncom 4181 | . . . . 5 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
5 | 4 | fveq2i 6923 | . . . 4 ⊢ (⊥‘(𝐵 ∪ 𝐴)) = (⊥‘(𝐴 ∪ 𝐵)) |
6 | 5 | fveq2i 6923 | . . 3 ⊢ (⊥‘(⊥‘(𝐵 ∪ 𝐴))) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
7 | 3, 6 | eqtrdi 2796 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
8 | 1, 7 | eqtr4d 2783 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ‘cfv 6573 (class class class)co 7448 Sℋ csh 30960 ⊥cort 30962 ∨ℋ chj 30965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-sh 31239 df-chj 31342 |
This theorem is referenced by: shlej2 31393 shjcomi 31403 shub2 31415 chjcom 31538 |
Copyright terms: Public domain | W3C validator |