| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shjcom | Structured version Visualization version GIF version | ||
| Description: Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shjcom | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shjval 31295 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
| 2 | shjval 31295 | . . . 4 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐵 ∪ 𝐴)))) | |
| 3 | 2 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐵 ∪ 𝐴)))) |
| 4 | uncom 4109 | . . . . 5 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
| 5 | 4 | fveq2i 6825 | . . . 4 ⊢ (⊥‘(𝐵 ∪ 𝐴)) = (⊥‘(𝐴 ∪ 𝐵)) |
| 6 | 5 | fveq2i 6825 | . . 3 ⊢ (⊥‘(⊥‘(𝐵 ∪ 𝐴))) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
| 7 | 3, 6 | eqtrdi 2780 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
| 8 | 1, 7 | eqtr4d 2767 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3901 ‘cfv 6482 (class class class)co 7349 Sℋ csh 30872 ⊥cort 30874 ∨ℋ chj 30877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-hilex 30943 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-sh 31151 df-chj 31254 |
| This theorem is referenced by: shlej2 31305 shjcomi 31315 shub2 31327 chjcom 31450 |
| Copyright terms: Public domain | W3C validator |