HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shjcom Structured version   Visualization version   GIF version

Theorem shjcom 30878
Description: Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shjcom ((𝐴S𝐵S ) → (𝐴 𝐵) = (𝐵 𝐴))

Proof of Theorem shjcom
StepHypRef Expression
1 shjval 30871 . 2 ((𝐴S𝐵S ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
2 shjval 30871 . . . 4 ((𝐵S𝐴S ) → (𝐵 𝐴) = (⊥‘(⊥‘(𝐵𝐴))))
32ancoms 457 . . 3 ((𝐴S𝐵S ) → (𝐵 𝐴) = (⊥‘(⊥‘(𝐵𝐴))))
4 uncom 4152 . . . . 5 (𝐵𝐴) = (𝐴𝐵)
54fveq2i 6893 . . . 4 (⊥‘(𝐵𝐴)) = (⊥‘(𝐴𝐵))
65fveq2i 6893 . . 3 (⊥‘(⊥‘(𝐵𝐴))) = (⊥‘(⊥‘(𝐴𝐵)))
73, 6eqtrdi 2786 . 2 ((𝐴S𝐵S ) → (𝐵 𝐴) = (⊥‘(⊥‘(𝐴𝐵))))
81, 7eqtr4d 2773 1 ((𝐴S𝐵S ) → (𝐴 𝐵) = (𝐵 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  cun 3945  cfv 6542  (class class class)co 7411   S csh 30448  cort 30450   chj 30453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-hilex 30519
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-sh 30727  df-chj 30830
This theorem is referenced by:  shlej2  30881  shjcomi  30891  shub2  30903  chjcom  31026
  Copyright terms: Public domain W3C validator