Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shjcom | Structured version Visualization version GIF version |
Description: Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shjcom | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shjval 29432 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
2 | shjval 29432 | . . . 4 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐵 ∪ 𝐴)))) | |
3 | 2 | ancoms 462 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐵 ∪ 𝐴)))) |
4 | uncom 4067 | . . . . 5 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
5 | 4 | fveq2i 6720 | . . . 4 ⊢ (⊥‘(𝐵 ∪ 𝐴)) = (⊥‘(𝐴 ∪ 𝐵)) |
6 | 5 | fveq2i 6720 | . . 3 ⊢ (⊥‘(⊥‘(𝐵 ∪ 𝐴))) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
7 | 3, 6 | eqtrdi 2794 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
8 | 1, 7 | eqtr4d 2780 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∪ cun 3864 ‘cfv 6380 (class class class)co 7213 Sℋ csh 29009 ⊥cort 29011 ∨ℋ chj 29014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-hilex 29080 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-sh 29288 df-chj 29391 |
This theorem is referenced by: shlej2 29442 shjcomi 29452 shub2 29464 chjcom 29587 |
Copyright terms: Public domain | W3C validator |