Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shjcom | Structured version Visualization version GIF version |
Description: Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shjcom | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shjval 29614 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
2 | shjval 29614 | . . . 4 ⊢ ((𝐵 ∈ Sℋ ∧ 𝐴 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐵 ∪ 𝐴)))) | |
3 | 2 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐵 ∪ 𝐴)))) |
4 | uncom 4083 | . . . . 5 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
5 | 4 | fveq2i 6759 | . . . 4 ⊢ (⊥‘(𝐵 ∪ 𝐴)) = (⊥‘(𝐴 ∪ 𝐵)) |
6 | 5 | fveq2i 6759 | . . 3 ⊢ (⊥‘(⊥‘(𝐵 ∪ 𝐴))) = (⊥‘(⊥‘(𝐴 ∪ 𝐵))) |
7 | 3, 6 | eqtrdi 2795 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐵 ∨ℋ 𝐴) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
8 | 1, 7 | eqtr4d 2781 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ‘cfv 6418 (class class class)co 7255 Sℋ csh 29191 ⊥cort 29193 ∨ℋ chj 29196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-sh 29470 df-chj 29573 |
This theorem is referenced by: shlej2 29624 shjcomi 29634 shub2 29646 chjcom 29769 |
Copyright terms: Public domain | W3C validator |