HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shjcom Structured version   Visualization version   GIF version

Theorem shjcom 31337
Description: Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shjcom ((𝐴S𝐵S ) → (𝐴 𝐵) = (𝐵 𝐴))

Proof of Theorem shjcom
StepHypRef Expression
1 shjval 31330 . 2 ((𝐴S𝐵S ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
2 shjval 31330 . . . 4 ((𝐵S𝐴S ) → (𝐵 𝐴) = (⊥‘(⊥‘(𝐵𝐴))))
32ancoms 458 . . 3 ((𝐴S𝐵S ) → (𝐵 𝐴) = (⊥‘(⊥‘(𝐵𝐴))))
4 uncom 4117 . . . . 5 (𝐵𝐴) = (𝐴𝐵)
54fveq2i 6843 . . . 4 (⊥‘(𝐵𝐴)) = (⊥‘(𝐴𝐵))
65fveq2i 6843 . . 3 (⊥‘(⊥‘(𝐵𝐴))) = (⊥‘(⊥‘(𝐴𝐵)))
73, 6eqtrdi 2780 . 2 ((𝐴S𝐵S ) → (𝐵 𝐴) = (⊥‘(⊥‘(𝐴𝐵))))
81, 7eqtr4d 2767 1 ((𝐴S𝐵S ) → (𝐴 𝐵) = (𝐵 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3909  cfv 6499  (class class class)co 7369   S csh 30907  cort 30909   chj 30912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-hilex 30978
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-sh 31186  df-chj 31289
This theorem is referenced by:  shlej2  31340  shjcomi  31350  shub2  31362  chjcom  31485
  Copyright terms: Public domain W3C validator