HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shjcom Structured version   Visualization version   GIF version

Theorem shjcom 31294
Description: Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shjcom ((𝐴S𝐵S ) → (𝐴 𝐵) = (𝐵 𝐴))

Proof of Theorem shjcom
StepHypRef Expression
1 shjval 31287 . 2 ((𝐴S𝐵S ) → (𝐴 𝐵) = (⊥‘(⊥‘(𝐴𝐵))))
2 shjval 31287 . . . 4 ((𝐵S𝐴S ) → (𝐵 𝐴) = (⊥‘(⊥‘(𝐵𝐴))))
32ancoms 458 . . 3 ((𝐴S𝐵S ) → (𝐵 𝐴) = (⊥‘(⊥‘(𝐵𝐴))))
4 uncom 4124 . . . . 5 (𝐵𝐴) = (𝐴𝐵)
54fveq2i 6864 . . . 4 (⊥‘(𝐵𝐴)) = (⊥‘(𝐴𝐵))
65fveq2i 6864 . . 3 (⊥‘(⊥‘(𝐵𝐴))) = (⊥‘(⊥‘(𝐴𝐵)))
73, 6eqtrdi 2781 . 2 ((𝐴S𝐵S ) → (𝐵 𝐴) = (⊥‘(⊥‘(𝐴𝐵))))
81, 7eqtr4d 2768 1 ((𝐴S𝐵S ) → (𝐴 𝐵) = (𝐵 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3915  cfv 6514  (class class class)co 7390   S csh 30864  cort 30866   chj 30869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-hilex 30935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-sh 31143  df-chj 31246
This theorem is referenced by:  shlej2  31297  shjcomi  31307  shub2  31319  chjcom  31442
  Copyright terms: Public domain W3C validator