![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsub1i | Structured version Visualization version GIF version |
Description: Subspace sum is an upper bound of its arguments. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl.1 | ⊢ 𝐴 ∈ Sℋ |
shincl.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shsub1i | ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | . . 3 ⊢ 𝐴 ∈ Sℋ | |
2 | shincl.2 | . . 3 ⊢ 𝐵 ∈ Sℋ | |
3 | 1, 2 | shsel1i 28800 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 +ℋ 𝐵)) |
4 | 3 | ssriv 3825 | 1 ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ⊆ wss 3792 (class class class)co 6924 Sℋ csh 28361 +ℋ cph 28364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-hilex 28432 ax-hfvadd 28433 ax-hvcom 28434 ax-hvass 28435 ax-hv0cl 28436 ax-hvaddid 28437 ax-hfvmul 28438 ax-hvmulid 28439 ax-hvdistr2 28442 ax-hvmul0 28443 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-po 5276 df-so 5277 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-ltxr 10418 df-sub 10610 df-neg 10611 df-grpo 27924 df-ablo 27976 df-hvsub 28404 df-sh 28640 df-shs 28743 |
This theorem is referenced by: shub1i 28809 shsidmi 28819 shslubi 28820 shs00i 28885 |
Copyright terms: Public domain | W3C validator |