| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ocss | Structured version Visualization version GIF version | ||
| Description: An orthogonal complement is a subset of Hilbert space. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ocss | ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocsh 31265 | . 2 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ Sℋ ) | |
| 2 | shss 31192 | . 2 ⊢ ((⊥‘𝐴) ∈ Sℋ → (⊥‘𝐴) ⊆ ℋ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⊆ wss 3898 ‘cfv 6486 ℋchba 30901 Sℋ csh 30910 ⊥cort 30912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-hilex 30981 ax-hfvadd 30982 ax-hv0cl 30985 ax-hfvmul 30987 ax-hvmul0 30992 ax-hfi 31061 ax-his2 31065 ax-his3 31066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-sh 31189 df-oc 31234 |
| This theorem is referenced by: shocss 31268 occon2 31270 ocorth 31273 ococss 31275 occon3 31279 occllem 31285 hsupcl 31321 spanssoc 31331 sshjcl 31337 ococin 31390 ssjo 31429 |
| Copyright terms: Public domain | W3C validator |