HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ocss Structured version   Visualization version   GIF version

Theorem ocss 29548
Description: An orthogonal complement is a subset of Hilbert space. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
ocss (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)

Proof of Theorem ocss
StepHypRef Expression
1 ocsh 29546 . 2 (𝐴 ⊆ ℋ → (⊥‘𝐴) ∈ S )
2 shss 29473 . 2 ((⊥‘𝐴) ∈ S → (⊥‘𝐴) ⊆ ℋ)
31, 2syl 17 1 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883  cfv 6418  chba 29182   S csh 29191  cort 29193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-hilex 29262  ax-hfvadd 29263  ax-hv0cl 29266  ax-hfvmul 29268  ax-hvmul0 29273  ax-hfi 29342  ax-his2 29346  ax-his3 29347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sh 29470  df-oc 29515
This theorem is referenced by:  shocss  29549  occon2  29551  ocorth  29554  ococss  29556  occon3  29560  occllem  29566  hsupcl  29602  spanssoc  29612  sshjcl  29618  ococin  29671  ssjo  29710
  Copyright terms: Public domain W3C validator