HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shocel Structured version   Visualization version   GIF version

Theorem shocel 29044
Description: Membership in orthogonal complement of H subspace. (Contributed by NM, 9-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shocel (𝐻S → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝐴

Proof of Theorem shocel
StepHypRef Expression
1 shss 28972 . 2 (𝐻S𝐻 ⊆ ℋ)
2 ocel 29043 . 2 (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0)))
31, 2syl 17 1 (𝐻S → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3126  wss 3910  cfv 6328  (class class class)co 7130  0cc0 10514  chba 28681   ·ih csp 28684   S csh 28690  cort 28692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303  ax-hilex 28761
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fv 6336  df-ov 7133  df-sh 28969  df-oc 29014
This theorem is referenced by:  ocin  29058  choc0  29088  choc1  29089  pjhthlem2  29154  pjclem4  29961  pj3si  29969
  Copyright terms: Public domain W3C validator