HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shorth Structured version   Visualization version   GIF version

Theorem shorth 28853
Description: Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shorth (𝐻S → (𝐺 ⊆ (⊥‘𝐻) → ((𝐴𝐺𝐵𝐻) → (𝐴 ·ih 𝐵) = 0)))

Proof of Theorem shorth
StepHypRef Expression
1 ssel 3852 . . . . . 6 (𝐺 ⊆ (⊥‘𝐻) → (𝐴𝐺𝐴 ∈ (⊥‘𝐻)))
21anim1d 601 . . . . 5 (𝐺 ⊆ (⊥‘𝐻) → ((𝐴𝐺𝐵𝐻) → (𝐴 ∈ (⊥‘𝐻) ∧ 𝐵𝐻)))
32imp 398 . . . 4 ((𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴𝐺𝐵𝐻)) → (𝐴 ∈ (⊥‘𝐻) ∧ 𝐵𝐻))
43ancomd 454 . . 3 ((𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴𝐺𝐵𝐻)) → (𝐵𝐻𝐴 ∈ (⊥‘𝐻)))
5 shocorth 28850 . . . . 5 (𝐻S → ((𝐵𝐻𝐴 ∈ (⊥‘𝐻)) → (𝐵 ·ih 𝐴) = 0))
65imp 398 . . . 4 ((𝐻S ∧ (𝐵𝐻𝐴 ∈ (⊥‘𝐻))) → (𝐵 ·ih 𝐴) = 0)
7 shss 28766 . . . . . . . 8 (𝐻S𝐻 ⊆ ℋ)
87sseld 3857 . . . . . . 7 (𝐻S → (𝐵𝐻𝐵 ∈ ℋ))
9 shocss 28844 . . . . . . . 8 (𝐻S → (⊥‘𝐻) ⊆ ℋ)
109sseld 3857 . . . . . . 7 (𝐻S → (𝐴 ∈ (⊥‘𝐻) → 𝐴 ∈ ℋ))
118, 10anim12d 599 . . . . . 6 (𝐻S → ((𝐵𝐻𝐴 ∈ (⊥‘𝐻)) → (𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ)))
1211imp 398 . . . . 5 ((𝐻S ∧ (𝐵𝐻𝐴 ∈ (⊥‘𝐻))) → (𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ))
13 orthcom 28664 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 ·ih 𝐴) = 0 ↔ (𝐴 ·ih 𝐵) = 0))
1412, 13syl 17 . . . 4 ((𝐻S ∧ (𝐵𝐻𝐴 ∈ (⊥‘𝐻))) → ((𝐵 ·ih 𝐴) = 0 ↔ (𝐴 ·ih 𝐵) = 0))
156, 14mpbid 224 . . 3 ((𝐻S ∧ (𝐵𝐻𝐴 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0)
164, 15sylan2 583 . 2 ((𝐻S ∧ (𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴𝐺𝐵𝐻))) → (𝐴 ·ih 𝐵) = 0)
1716exp32 413 1 (𝐻S → (𝐺 ⊆ (⊥‘𝐻) → ((𝐴𝐺𝐵𝐻) → (𝐴 ·ih 𝐵) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wss 3829  cfv 6188  (class class class)co 6976  0cc0 10335  chba 28475   ·ih csp 28478   S csh 28484  cort 28486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-hilex 28555  ax-hfvadd 28556  ax-hv0cl 28559  ax-hfvmul 28561  ax-hvmul0 28566  ax-hfi 28635  ax-his1 28638  ax-his2 28639  ax-his3 28640
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-po 5326  df-so 5327  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-2 11503  df-cj 14319  df-re 14320  df-im 14321  df-sh 28763  df-oc 28808
This theorem is referenced by:  pjoi0  29275
  Copyright terms: Public domain W3C validator