Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shorth | Structured version Visualization version GIF version |
Description: Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shorth | ⊢ (𝐻 ∈ Sℋ → (𝐺 ⊆ (⊥‘𝐻) → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ih 𝐵) = 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3914 | . . . . . 6 ⊢ (𝐺 ⊆ (⊥‘𝐻) → (𝐴 ∈ 𝐺 → 𝐴 ∈ (⊥‘𝐻))) | |
2 | 1 | anim1d 611 | . . . . 5 ⊢ (𝐺 ⊆ (⊥‘𝐻) → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → (𝐴 ∈ (⊥‘𝐻) ∧ 𝐵 ∈ 𝐻))) |
3 | 2 | imp 407 | . . . 4 ⊢ ((𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻)) → (𝐴 ∈ (⊥‘𝐻) ∧ 𝐵 ∈ 𝐻)) |
4 | 3 | ancomd 462 | . . 3 ⊢ ((𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻)) → (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) |
5 | shocorth 29640 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → ((𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐵 ·ih 𝐴) = 0)) | |
6 | 5 | imp 407 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) → (𝐵 ·ih 𝐴) = 0) |
7 | shss 29558 | . . . . . . . 8 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
8 | 7 | sseld 3920 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝐵 ∈ 𝐻 → 𝐵 ∈ ℋ)) |
9 | shocss 29634 | . . . . . . . 8 ⊢ (𝐻 ∈ Sℋ → (⊥‘𝐻) ⊆ ℋ) | |
10 | 9 | sseld 3920 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (⊥‘𝐻) → 𝐴 ∈ ℋ)) |
11 | 8, 10 | anim12d 609 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → ((𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ))) |
12 | 11 | imp 407 | . . . . 5 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) → (𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ)) |
13 | orthcom 29456 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 ·ih 𝐴) = 0 ↔ (𝐴 ·ih 𝐵) = 0)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) → ((𝐵 ·ih 𝐴) = 0 ↔ (𝐴 ·ih 𝐵) = 0)) |
15 | 6, 14 | mpbid 231 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0) |
16 | 4, 15 | sylan2 593 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻))) → (𝐴 ·ih 𝐵) = 0) |
17 | 16 | exp32 421 | 1 ⊢ (𝐻 ∈ Sℋ → (𝐺 ⊆ (⊥‘𝐻) → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ih 𝐵) = 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6427 (class class class)co 7268 0cc0 10859 ℋchba 29267 ·ih csp 29270 Sℋ csh 29276 ⊥cort 29278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 ax-hilex 29347 ax-hfvadd 29348 ax-hv0cl 29351 ax-hfvmul 29353 ax-hvmul0 29358 ax-hfi 29427 ax-his1 29430 ax-his2 29431 ax-his3 29432 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-po 5499 df-so 5500 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-div 11621 df-2 12024 df-cj 14798 df-re 14799 df-im 14800 df-sh 29555 df-oc 29600 |
This theorem is referenced by: pjoi0 30065 |
Copyright terms: Public domain | W3C validator |