![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shorth | Structured version Visualization version GIF version |
Description: Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shorth | ⊢ (𝐻 ∈ Sℋ → (𝐺 ⊆ (⊥‘𝐻) → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ih 𝐵) = 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3852 | . . . . . 6 ⊢ (𝐺 ⊆ (⊥‘𝐻) → (𝐴 ∈ 𝐺 → 𝐴 ∈ (⊥‘𝐻))) | |
2 | 1 | anim1d 601 | . . . . 5 ⊢ (𝐺 ⊆ (⊥‘𝐻) → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → (𝐴 ∈ (⊥‘𝐻) ∧ 𝐵 ∈ 𝐻))) |
3 | 2 | imp 398 | . . . 4 ⊢ ((𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻)) → (𝐴 ∈ (⊥‘𝐻) ∧ 𝐵 ∈ 𝐻)) |
4 | 3 | ancomd 454 | . . 3 ⊢ ((𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻)) → (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) |
5 | shocorth 28850 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → ((𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐵 ·ih 𝐴) = 0)) | |
6 | 5 | imp 398 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) → (𝐵 ·ih 𝐴) = 0) |
7 | shss 28766 | . . . . . . . 8 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
8 | 7 | sseld 3857 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝐵 ∈ 𝐻 → 𝐵 ∈ ℋ)) |
9 | shocss 28844 | . . . . . . . 8 ⊢ (𝐻 ∈ Sℋ → (⊥‘𝐻) ⊆ ℋ) | |
10 | 9 | sseld 3857 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (⊥‘𝐻) → 𝐴 ∈ ℋ)) |
11 | 8, 10 | anim12d 599 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → ((𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ))) |
12 | 11 | imp 398 | . . . . 5 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) → (𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ)) |
13 | orthcom 28664 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 ·ih 𝐴) = 0 ↔ (𝐴 ·ih 𝐵) = 0)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) → ((𝐵 ·ih 𝐴) = 0 ↔ (𝐴 ·ih 𝐵) = 0)) |
15 | 6, 14 | mpbid 224 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0) |
16 | 4, 15 | sylan2 583 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻))) → (𝐴 ·ih 𝐵) = 0) |
17 | 16 | exp32 413 | 1 ⊢ (𝐻 ∈ Sℋ → (𝐺 ⊆ (⊥‘𝐻) → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ih 𝐵) = 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ⊆ wss 3829 ‘cfv 6188 (class class class)co 6976 0cc0 10335 ℋchba 28475 ·ih csp 28478 Sℋ csh 28484 ⊥cort 28486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-hilex 28555 ax-hfvadd 28556 ax-hv0cl 28559 ax-hfvmul 28561 ax-hvmul0 28566 ax-hfi 28635 ax-his1 28638 ax-his2 28639 ax-his3 28640 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-po 5326 df-so 5327 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-2 11503 df-cj 14319 df-re 14320 df-im 14321 df-sh 28763 df-oc 28808 |
This theorem is referenced by: pjoi0 29275 |
Copyright terms: Public domain | W3C validator |