| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shorth | Structured version Visualization version GIF version | ||
| Description: Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shorth | ⊢ (𝐻 ∈ Sℋ → (𝐺 ⊆ (⊥‘𝐻) → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ih 𝐵) = 0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3923 | . . . . . 6 ⊢ (𝐺 ⊆ (⊥‘𝐻) → (𝐴 ∈ 𝐺 → 𝐴 ∈ (⊥‘𝐻))) | |
| 2 | 1 | anim1d 611 | . . . . 5 ⊢ (𝐺 ⊆ (⊥‘𝐻) → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → (𝐴 ∈ (⊥‘𝐻) ∧ 𝐵 ∈ 𝐻))) |
| 3 | 2 | imp 406 | . . . 4 ⊢ ((𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻)) → (𝐴 ∈ (⊥‘𝐻) ∧ 𝐵 ∈ 𝐻)) |
| 4 | 3 | ancomd 461 | . . 3 ⊢ ((𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻)) → (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) |
| 5 | shocorth 31264 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → ((𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐵 ·ih 𝐴) = 0)) | |
| 6 | 5 | imp 406 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) → (𝐵 ·ih 𝐴) = 0) |
| 7 | shss 31182 | . . . . . . . 8 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
| 8 | 7 | sseld 3928 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝐵 ∈ 𝐻 → 𝐵 ∈ ℋ)) |
| 9 | shocss 31258 | . . . . . . . 8 ⊢ (𝐻 ∈ Sℋ → (⊥‘𝐻) ⊆ ℋ) | |
| 10 | 9 | sseld 3928 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ (⊥‘𝐻) → 𝐴 ∈ ℋ)) |
| 11 | 8, 10 | anim12d 609 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → ((𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻)) → (𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ))) |
| 12 | 11 | imp 406 | . . . . 5 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) → (𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ)) |
| 13 | orthcom 31080 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 ·ih 𝐴) = 0 ↔ (𝐴 ·ih 𝐵) = 0)) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) → ((𝐵 ·ih 𝐴) = 0 ↔ (𝐴 ·ih 𝐵) = 0)) |
| 15 | 6, 14 | mpbid 232 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐵 ∈ 𝐻 ∧ 𝐴 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0) |
| 16 | 4, 15 | sylan2 593 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ (𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻))) → (𝐴 ·ih 𝐵) = 0) |
| 17 | 16 | exp32 420 | 1 ⊢ (𝐻 ∈ Sℋ → (𝐺 ⊆ (⊥‘𝐻) → ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ih 𝐵) = 0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6476 (class class class)co 7341 0cc0 11001 ℋchba 30891 ·ih csp 30894 Sℋ csh 30900 ⊥cort 30902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-hilex 30971 ax-hfvadd 30972 ax-hv0cl 30975 ax-hfvmul 30977 ax-hvmul0 30982 ax-hfi 31051 ax-his1 31054 ax-his2 31055 ax-his3 31056 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-cj 15001 df-re 15002 df-im 15003 df-sh 31179 df-oc 31224 |
| This theorem is referenced by: pjoi0 31689 |
| Copyright terms: Public domain | W3C validator |