Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shsubcl | Structured version Visualization version GIF version |
Description: Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shsubcl | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shss 29158 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
2 | 1 | sseld 3886 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ)) |
3 | 1 | sseld 3886 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐵 ∈ 𝐻 → 𝐵 ∈ ℋ)) |
4 | 2, 3 | anim12d 612 | . . . 4 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ))) |
5 | 4 | 3impib 1117 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)) |
6 | hvsubval 28964 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
8 | neg1cn 11843 | . . . . 5 ⊢ -1 ∈ ℂ | |
9 | shmulcl 29166 | . . . . 5 ⊢ ((𝐻 ∈ Sℋ ∧ -1 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (-1 ·ℎ 𝐵) ∈ 𝐻) | |
10 | 8, 9 | mp3an2 1450 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐵 ∈ 𝐻) → (-1 ·ℎ 𝐵) ∈ 𝐻) |
11 | 10 | 3adant2 1132 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (-1 ·ℎ 𝐵) ∈ 𝐻) |
12 | shaddcl 29165 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ (-1 ·ℎ 𝐵) ∈ 𝐻) → (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ 𝐻) | |
13 | 11, 12 | syld3an3 1410 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ 𝐻) |
14 | 7, 13 | eqeltrd 2834 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 (class class class)co 7183 ℂcc 10626 1c1 10629 -cneg 10962 ℋchba 28867 +ℎ cva 28868 ·ℎ csm 28869 −ℎ cmv 28873 Sℋ csh 28876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-resscn 10685 ax-1cn 10686 ax-icn 10687 ax-addcl 10688 ax-addrcl 10689 ax-mulcl 10690 ax-mulrcl 10691 ax-mulcom 10692 ax-addass 10693 ax-mulass 10694 ax-distr 10695 ax-i2m1 10696 ax-1ne0 10697 ax-1rid 10698 ax-rnegex 10699 ax-rrecex 10700 ax-cnre 10701 ax-pre-lttri 10702 ax-pre-lttrn 10703 ax-pre-ltadd 10704 ax-hilex 28947 ax-hfvadd 28948 ax-hfvmul 28953 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-po 5452 df-so 5453 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-er 8333 df-en 8569 df-dom 8570 df-sdom 8571 df-pnf 10768 df-mnf 10769 df-ltxr 10771 df-sub 10963 df-neg 10964 df-hvsub 28919 df-sh 29155 |
This theorem is referenced by: hhssmetdval 29225 shuni 29248 shsvs 29271 omlsilem 29350 pjoc1i 29379 chscllem2 29586 sumspansn 29597 spansncvi 29600 pjss2i 29628 pjssmii 29629 pjocini 29646 sumdmdii 30363 cdjreui 30380 |
Copyright terms: Public domain | W3C validator |