| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shsubcl | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shss 31229 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
| 2 | 1 | sseld 3982 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ)) |
| 3 | 1 | sseld 3982 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐵 ∈ 𝐻 → 𝐵 ∈ ℋ)) |
| 4 | 2, 3 | anim12d 609 | . . . 4 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ))) |
| 5 | 4 | 3impib 1117 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)) |
| 6 | hvsubval 31035 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| 8 | neg1cn 12380 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 9 | shmulcl 31237 | . . . . 5 ⊢ ((𝐻 ∈ Sℋ ∧ -1 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (-1 ·ℎ 𝐵) ∈ 𝐻) | |
| 10 | 8, 9 | mp3an2 1451 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐵 ∈ 𝐻) → (-1 ·ℎ 𝐵) ∈ 𝐻) |
| 11 | 10 | 3adant2 1132 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (-1 ·ℎ 𝐵) ∈ 𝐻) |
| 12 | shaddcl 31236 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ (-1 ·ℎ 𝐵) ∈ 𝐻) → (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ 𝐻) | |
| 13 | 11, 12 | syld3an3 1411 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ 𝐻) |
| 14 | 7, 13 | eqeltrd 2841 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 (class class class)co 7431 ℂcc 11153 1c1 11156 -cneg 11493 ℋchba 30938 +ℎ cva 30939 ·ℎ csm 30940 −ℎ cmv 30944 Sℋ csh 30947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-hilex 31018 ax-hfvadd 31019 ax-hfvmul 31024 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-sub 11494 df-neg 11495 df-hvsub 30990 df-sh 31226 |
| This theorem is referenced by: hhssmetdval 31296 shuni 31319 shsvs 31342 omlsilem 31421 pjoc1i 31450 chscllem2 31657 sumspansn 31668 spansncvi 31671 pjss2i 31699 pjssmii 31700 pjocini 31717 sumdmdii 32434 cdjreui 32451 |
| Copyright terms: Public domain | W3C validator |