| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shsubcl | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shss 31112 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
| 2 | 1 | sseld 3942 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ)) |
| 3 | 1 | sseld 3942 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐵 ∈ 𝐻 → 𝐵 ∈ ℋ)) |
| 4 | 2, 3 | anim12d 609 | . . . 4 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ))) |
| 5 | 4 | 3impib 1116 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)) |
| 6 | hvsubval 30918 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| 8 | neg1cn 12147 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 9 | shmulcl 31120 | . . . . 5 ⊢ ((𝐻 ∈ Sℋ ∧ -1 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (-1 ·ℎ 𝐵) ∈ 𝐻) | |
| 10 | 8, 9 | mp3an2 1451 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐵 ∈ 𝐻) → (-1 ·ℎ 𝐵) ∈ 𝐻) |
| 11 | 10 | 3adant2 1131 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (-1 ·ℎ 𝐵) ∈ 𝐻) |
| 12 | shaddcl 31119 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ (-1 ·ℎ 𝐵) ∈ 𝐻) → (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ 𝐻) | |
| 13 | 11, 12 | syld3an3 1411 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ 𝐻) |
| 14 | 7, 13 | eqeltrd 2828 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 1c1 11045 -cneg 11382 ℋchba 30821 +ℎ cva 30822 ·ℎ csm 30823 −ℎ cmv 30827 Sℋ csh 30830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-hilex 30901 ax-hfvadd 30902 ax-hfvmul 30907 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 df-hvsub 30873 df-sh 31109 |
| This theorem is referenced by: hhssmetdval 31179 shuni 31202 shsvs 31225 omlsilem 31304 pjoc1i 31333 chscllem2 31540 sumspansn 31551 spansncvi 31554 pjss2i 31582 pjssmii 31583 pjocini 31600 sumdmdii 32317 cdjreui 32334 |
| Copyright terms: Public domain | W3C validator |