| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shsubcl | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shss 31139 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
| 2 | 1 | sseld 3945 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐴 ∈ 𝐻 → 𝐴 ∈ ℋ)) |
| 3 | 1 | sseld 3945 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐵 ∈ 𝐻 → 𝐵 ∈ ℋ)) |
| 4 | 2, 3 | anim12d 609 | . . . 4 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ))) |
| 5 | 4 | 3impib 1116 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)) |
| 6 | hvsubval 30945 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| 8 | neg1cn 12171 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 9 | shmulcl 31147 | . . . . 5 ⊢ ((𝐻 ∈ Sℋ ∧ -1 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (-1 ·ℎ 𝐵) ∈ 𝐻) | |
| 10 | 8, 9 | mp3an2 1451 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐵 ∈ 𝐻) → (-1 ·ℎ 𝐵) ∈ 𝐻) |
| 11 | 10 | 3adant2 1131 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (-1 ·ℎ 𝐵) ∈ 𝐻) |
| 12 | shaddcl 31146 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ (-1 ·ℎ 𝐵) ∈ 𝐻) → (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ 𝐻) | |
| 13 | 11, 12 | syld3an3 1411 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ 𝐻) |
| 14 | 7, 13 | eqeltrd 2828 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 -cneg 11406 ℋchba 30848 +ℎ cva 30849 ·ℎ csm 30850 −ℎ cmv 30854 Sℋ csh 30857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-hilex 30928 ax-hfvadd 30929 ax-hfvmul 30934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 df-hvsub 30900 df-sh 31136 |
| This theorem is referenced by: hhssmetdval 31206 shuni 31229 shsvs 31252 omlsilem 31331 pjoc1i 31360 chscllem2 31567 sumspansn 31578 spansncvi 31581 pjss2i 31609 pjssmii 31610 pjocini 31627 sumdmdii 32344 cdjreui 32361 |
| Copyright terms: Public domain | W3C validator |