HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsubcl Structured version   Visualization version   GIF version

Theorem shsubcl 31249
Description: Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shsubcl ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 𝐵) ∈ 𝐻)

Proof of Theorem shsubcl
StepHypRef Expression
1 shss 31239 . . . . . 6 (𝐻S𝐻 ⊆ ℋ)
21sseld 3994 . . . . 5 (𝐻S → (𝐴𝐻𝐴 ∈ ℋ))
31sseld 3994 . . . . 5 (𝐻S → (𝐵𝐻𝐵 ∈ ℋ))
42, 3anim12d 609 . . . 4 (𝐻S → ((𝐴𝐻𝐵𝐻) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)))
543impib 1115 . . 3 ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ))
6 hvsubval 31045 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
75, 6syl 17 . 2 ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
8 neg1cn 12378 . . . . 5 -1 ∈ ℂ
9 shmulcl 31247 . . . . 5 ((𝐻S ∧ -1 ∈ ℂ ∧ 𝐵𝐻) → (-1 · 𝐵) ∈ 𝐻)
108, 9mp3an2 1448 . . . 4 ((𝐻S𝐵𝐻) → (-1 · 𝐵) ∈ 𝐻)
11103adant2 1130 . . 3 ((𝐻S𝐴𝐻𝐵𝐻) → (-1 · 𝐵) ∈ 𝐻)
12 shaddcl 31246 . . 3 ((𝐻S𝐴𝐻 ∧ (-1 · 𝐵) ∈ 𝐻) → (𝐴 + (-1 · 𝐵)) ∈ 𝐻)
1311, 12syld3an3 1408 . 2 ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 + (-1 · 𝐵)) ∈ 𝐻)
147, 13eqeltrd 2839 1 ((𝐻S𝐴𝐻𝐵𝐻) → (𝐴 𝐵) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151  1c1 11154  -cneg 11491  chba 30948   + cva 30949   · csm 30950   cmv 30954   S csh 30957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-hilex 31028  ax-hfvadd 31029  ax-hfvmul 31034
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-sub 11492  df-neg 11493  df-hvsub 31000  df-sh 31236
This theorem is referenced by:  hhssmetdval  31306  shuni  31329  shsvs  31352  omlsilem  31431  pjoc1i  31460  chscllem2  31667  sumspansn  31678  spansncvi  31681  pjss2i  31709  pjssmii  31710  pjocini  31727  sumdmdii  32444  cdjreui  32461
  Copyright terms: Public domain W3C validator