| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shsel | Structured version Visualization version GIF version | ||
| Description: Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004.) (Revised by Mario Carneiro, 29-Jan-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shsel | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shsval 31214 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = ( +ℎ “ (𝐴 × 𝐵))) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ 𝐶 ∈ ( +ℎ “ (𝐴 × 𝐵)))) |
| 3 | ax-hfvadd 30902 | . . . 4 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
| 4 | ffn 6670 | . . . 4 ⊢ ( +ℎ :( ℋ × ℋ)⟶ ℋ → +ℎ Fn ( ℋ × ℋ)) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ +ℎ Fn ( ℋ × ℋ) |
| 6 | shss 31112 | . . . 4 ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ) | |
| 7 | shss 31112 | . . . 4 ⊢ (𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ) | |
| 8 | xpss12 5646 | . . . 4 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 × 𝐵) ⊆ ( ℋ × ℋ)) | |
| 9 | 6, 7, 8 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 × 𝐵) ⊆ ( ℋ × ℋ)) |
| 10 | ovelimab 7547 | . . 3 ⊢ (( +ℎ Fn ( ℋ × ℋ) ∧ (𝐴 × 𝐵) ⊆ ( ℋ × ℋ)) → (𝐶 ∈ ( +ℎ “ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) | |
| 11 | 5, 9, 10 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ ( +ℎ “ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) |
| 12 | 2, 11 | bitrd 279 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3911 × cxp 5629 “ cima 5634 Fn wfn 6494 ⟶wf 6495 (class class class)co 7369 ℋchba 30821 +ℎ cva 30822 Sℋ csh 30830 +ℋ cph 30833 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-hilex 30901 ax-hfvadd 30902 ax-hvcom 30903 ax-hvass 30904 ax-hv0cl 30905 ax-hvaddid 30906 ax-hfvmul 30907 ax-hvmulid 30908 ax-hvdistr2 30911 ax-hvmul0 30912 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 df-grpo 30395 df-ablo 30447 df-hvsub 30873 df-sh 31109 df-shs 31210 |
| This theorem is referenced by: shsel3 31217 shseli 31218 shscom 31221 shsva 31222 shless 31261 pjhth 31295 pjhtheu 31296 pjpreeq 31300 pjpjpre 31321 chscllem4 31542 sumdmdii 32317 sumdmdlem 32320 |
| Copyright terms: Public domain | W3C validator |