![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsel | Structured version Visualization version GIF version |
Description: Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004.) (Revised by Mario Carneiro, 29-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shsel | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shsval 28722 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = ( +ℎ “ (𝐴 × 𝐵))) | |
2 | 1 | eleq2d 2892 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ 𝐶 ∈ ( +ℎ “ (𝐴 × 𝐵)))) |
3 | ax-hfvadd 28408 | . . . 4 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
4 | ffn 6282 | . . . 4 ⊢ ( +ℎ :( ℋ × ℋ)⟶ ℋ → +ℎ Fn ( ℋ × ℋ)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ +ℎ Fn ( ℋ × ℋ) |
6 | shss 28618 | . . . 4 ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ) | |
7 | shss 28618 | . . . 4 ⊢ (𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ) | |
8 | xpss12 5361 | . . . 4 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 × 𝐵) ⊆ ( ℋ × ℋ)) | |
9 | 6, 7, 8 | syl2an 589 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 × 𝐵) ⊆ ( ℋ × ℋ)) |
10 | ovelimab 7077 | . . 3 ⊢ (( +ℎ Fn ( ℋ × ℋ) ∧ (𝐴 × 𝐵) ⊆ ( ℋ × ℋ)) → (𝐶 ∈ ( +ℎ “ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) | |
11 | 5, 9, 10 | sylancr 581 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ ( +ℎ “ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) |
12 | 2, 11 | bitrd 271 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∃wrex 3118 ⊆ wss 3798 × cxp 5344 “ cima 5349 Fn wfn 6122 ⟶wf 6123 (class class class)co 6910 ℋchba 28327 +ℎ cva 28328 Sℋ csh 28336 +ℋ cph 28339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-hilex 28407 ax-hfvadd 28408 ax-hvcom 28409 ax-hvass 28410 ax-hv0cl 28411 ax-hvaddid 28412 ax-hfvmul 28413 ax-hvmulid 28414 ax-hvdistr2 28417 ax-hvmul0 28418 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-po 5265 df-so 5266 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-ltxr 10403 df-sub 10594 df-neg 10595 df-grpo 27899 df-ablo 27951 df-hvsub 28379 df-sh 28615 df-shs 28718 |
This theorem is referenced by: shsel3 28725 shseli 28726 shscom 28729 shsva 28730 shless 28769 pjhth 28803 pjhtheu 28804 pjpreeq 28808 pjpjpre 28829 chscllem4 29050 sumdmdii 29825 sumdmdlem 29828 |
Copyright terms: Public domain | W3C validator |