![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsel | Structured version Visualization version GIF version |
Description: Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004.) (Revised by Mario Carneiro, 29-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shsel | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shsval 30998 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = ( +ℎ “ (𝐴 × 𝐵))) | |
2 | 1 | eleq2d 2818 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ 𝐶 ∈ ( +ℎ “ (𝐴 × 𝐵)))) |
3 | ax-hfvadd 30686 | . . . 4 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
4 | ffn 6717 | . . . 4 ⊢ ( +ℎ :( ℋ × ℋ)⟶ ℋ → +ℎ Fn ( ℋ × ℋ)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ +ℎ Fn ( ℋ × ℋ) |
6 | shss 30896 | . . . 4 ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ) | |
7 | shss 30896 | . . . 4 ⊢ (𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ) | |
8 | xpss12 5691 | . . . 4 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 × 𝐵) ⊆ ( ℋ × ℋ)) | |
9 | 6, 7, 8 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 × 𝐵) ⊆ ( ℋ × ℋ)) |
10 | ovelimab 7589 | . . 3 ⊢ (( +ℎ Fn ( ℋ × ℋ) ∧ (𝐴 × 𝐵) ⊆ ( ℋ × ℋ)) → (𝐶 ∈ ( +ℎ “ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) | |
11 | 5, 9, 10 | sylancr 586 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ ( +ℎ “ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) |
12 | 2, 11 | bitrd 279 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ⊆ wss 3948 × cxp 5674 “ cima 5679 Fn wfn 6538 ⟶wf 6539 (class class class)co 7412 ℋchba 30605 +ℎ cva 30606 Sℋ csh 30614 +ℋ cph 30617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-hilex 30685 ax-hfvadd 30686 ax-hvcom 30687 ax-hvass 30688 ax-hv0cl 30689 ax-hvaddid 30690 ax-hfvmul 30691 ax-hvmulid 30692 ax-hvdistr2 30695 ax-hvmul0 30696 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-ltxr 11260 df-sub 11453 df-neg 11454 df-grpo 30179 df-ablo 30231 df-hvsub 30657 df-sh 30893 df-shs 30994 |
This theorem is referenced by: shsel3 31001 shseli 31002 shscom 31005 shsva 31006 shless 31045 pjhth 31079 pjhtheu 31080 pjpreeq 31084 pjpjpre 31105 chscllem4 31326 sumdmdii 32101 sumdmdlem 32104 |
Copyright terms: Public domain | W3C validator |