![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsel | Structured version Visualization version GIF version |
Description: Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004.) (Revised by Mario Carneiro, 29-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shsel | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shsval 30254 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 +ℋ 𝐵) = ( +ℎ “ (𝐴 × 𝐵))) | |
2 | 1 | eleq2d 2823 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ 𝐶 ∈ ( +ℎ “ (𝐴 × 𝐵)))) |
3 | ax-hfvadd 29942 | . . . 4 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
4 | ffn 6668 | . . . 4 ⊢ ( +ℎ :( ℋ × ℋ)⟶ ℋ → +ℎ Fn ( ℋ × ℋ)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ +ℎ Fn ( ℋ × ℋ) |
6 | shss 30152 | . . . 4 ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ) | |
7 | shss 30152 | . . . 4 ⊢ (𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ) | |
8 | xpss12 5648 | . . . 4 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 × 𝐵) ⊆ ( ℋ × ℋ)) | |
9 | 6, 7, 8 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 × 𝐵) ⊆ ( ℋ × ℋ)) |
10 | ovelimab 7532 | . . 3 ⊢ (( +ℎ Fn ( ℋ × ℋ) ∧ (𝐴 × 𝐵) ⊆ ( ℋ × ℋ)) → (𝐶 ∈ ( +ℎ “ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) | |
11 | 5, 9, 10 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ ( +ℎ “ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) |
12 | 2, 11 | bitrd 278 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3073 ⊆ wss 3910 × cxp 5631 “ cima 5636 Fn wfn 6491 ⟶wf 6492 (class class class)co 7357 ℋchba 29861 +ℎ cva 29862 Sℋ csh 29870 +ℋ cph 29873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-hilex 29941 ax-hfvadd 29942 ax-hvcom 29943 ax-hvass 29944 ax-hv0cl 29945 ax-hvaddid 29946 ax-hfvmul 29947 ax-hvmulid 29948 ax-hvdistr2 29951 ax-hvmul0 29952 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-po 5545 df-so 5546 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-ltxr 11194 df-sub 11387 df-neg 11388 df-grpo 29435 df-ablo 29487 df-hvsub 29913 df-sh 30149 df-shs 30250 |
This theorem is referenced by: shsel3 30257 shseli 30258 shscom 30261 shsva 30262 shless 30301 pjhth 30335 pjhtheu 30336 pjpreeq 30340 pjpjpre 30361 chscllem4 30582 sumdmdii 31357 sumdmdlem 31360 |
Copyright terms: Public domain | W3C validator |