HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsel Structured version   Visualization version   GIF version

Theorem shsel 31216
Description: Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004.) (Revised by Mario Carneiro, 29-Jan-2014.) (New usage is discouraged.)
Assertion
Ref Expression
shsel ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem shsel
StepHypRef Expression
1 shsval 31214 . . 3 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = ( + “ (𝐴 × 𝐵)))
21eleq2d 2814 . 2 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ 𝐶 ∈ ( + “ (𝐴 × 𝐵))))
3 ax-hfvadd 30902 . . . 4 + :( ℋ × ℋ)⟶ ℋ
4 ffn 6670 . . . 4 ( + :( ℋ × ℋ)⟶ ℋ → + Fn ( ℋ × ℋ))
53, 4ax-mp 5 . . 3 + Fn ( ℋ × ℋ)
6 shss 31112 . . . 4 (𝐴S𝐴 ⊆ ℋ)
7 shss 31112 . . . 4 (𝐵S𝐵 ⊆ ℋ)
8 xpss12 5646 . . . 4 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 × 𝐵) ⊆ ( ℋ × ℋ))
96, 7, 8syl2an 596 . . 3 ((𝐴S𝐵S ) → (𝐴 × 𝐵) ⊆ ( ℋ × ℋ))
10 ovelimab 7547 . . 3 (( + Fn ( ℋ × ℋ) ∧ (𝐴 × 𝐵) ⊆ ( ℋ × ℋ)) → (𝐶 ∈ ( + “ (𝐴 × 𝐵)) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
115, 9, 10sylancr 587 . 2 ((𝐴S𝐵S ) → (𝐶 ∈ ( + “ (𝐴 × 𝐵)) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
122, 11bitrd 279 1 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3911   × cxp 5629  cima 5634   Fn wfn 6494  wf 6495  (class class class)co 7369  chba 30821   + cva 30822   S csh 30830   + cph 30833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-hilex 30901  ax-hfvadd 30902  ax-hvcom 30903  ax-hvass 30904  ax-hv0cl 30905  ax-hvaddid 30906  ax-hfvmul 30907  ax-hvmulid 30908  ax-hvdistr2 30911  ax-hvmul0 30912
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-sub 11383  df-neg 11384  df-grpo 30395  df-ablo 30447  df-hvsub 30873  df-sh 31109  df-shs 31210
This theorem is referenced by:  shsel3  31217  shseli  31218  shscom  31221  shsva  31222  shless  31261  pjhth  31295  pjhtheu  31296  pjpreeq  31300  pjpjpre  31321  chscllem4  31542  sumdmdii  32317  sumdmdlem  32320
  Copyright terms: Public domain W3C validator