Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarval Structured version   Visualization version   GIF version

Theorem sigarval 44366
Description: Define the signed area by treating complex numbers as vectors with two components. (Contributed by Saveliy Skresanov, 19-Sep-2017.)
Hypothesis
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
Assertion
Ref Expression
sigarval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem sigarval
StepHypRef Expression
1 simpl 483 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
21fveq2d 6778 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (∗‘𝑥) = (∗‘𝐴))
3 simpr 485 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
42, 3oveq12d 7293 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((∗‘𝑥) · 𝑦) = ((∗‘𝐴) · 𝐵))
54fveq2d 6778 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (ℑ‘((∗‘𝑥) · 𝑦)) = (ℑ‘((∗‘𝐴) · 𝐵)))
6 sigar . 2 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
7 fvex 6787 . 2 (ℑ‘((∗‘𝐴) · 𝐵)) ∈ V
85, 6, 7ovmpoa 7428 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  cmpo 7277  cc 10869   · cmul 10876  ccj 14807  cim 14809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280
This theorem is referenced by:  sigarim  44367  sigarac  44368  sigaraf  44369  sigarmf  44370  sigarls  44373  sigarid  44374  sigardiv  44377  sharhght  44381
  Copyright terms: Public domain W3C validator