Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarval Structured version   Visualization version   GIF version

Theorem sigarval 41970
Description: Define the signed area by treating complex numbers as vectors with two components. (Contributed by Saveliy Skresanov, 19-Sep-2017.)
Hypothesis
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
Assertion
Ref Expression
sigarval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem sigarval
StepHypRef Expression
1 simpl 476 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
21fveq2d 6450 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (∗‘𝑥) = (∗‘𝐴))
3 simpr 479 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
42, 3oveq12d 6940 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((∗‘𝑥) · 𝑦) = ((∗‘𝐴) · 𝐵))
54fveq2d 6450 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (ℑ‘((∗‘𝑥) · 𝑦)) = (ℑ‘((∗‘𝐴) · 𝐵)))
6 sigar . 2 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
7 fvex 6459 . 2 (ℑ‘((∗‘𝐴) · 𝐵)) ∈ V
85, 6, 7ovmpt2a 7068 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  cfv 6135  (class class class)co 6922  cmpt2 6924  cc 10270   · cmul 10277  ccj 14243  cim 14245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927
This theorem is referenced by:  sigarim  41971  sigarac  41972  sigaraf  41973  sigarmf  41974  sigarls  41977  sigarid  41978  sigardiv  41981  sharhght  41985
  Copyright terms: Public domain W3C validator