| Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigarval | Structured version Visualization version GIF version | ||
| Description: Define the signed area by treating complex numbers as vectors with two components. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
| Ref | Expression |
|---|---|
| sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
| Ref | Expression |
|---|---|
| sigarval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) | |
| 2 | 1 | fveq2d 6826 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∗‘𝑥) = (∗‘𝐴)) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
| 4 | 2, 3 | oveq12d 7364 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((∗‘𝑥) · 𝑦) = ((∗‘𝐴) · 𝐵)) |
| 5 | 4 | fveq2d 6826 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (ℑ‘((∗‘𝑥) · 𝑦)) = (ℑ‘((∗‘𝐴) · 𝐵))) |
| 6 | sigar | . 2 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
| 7 | fvex 6835 | . 2 ⊢ (ℑ‘((∗‘𝐴) · 𝐵)) ∈ V | |
| 8 | 5, 6, 7 | ovmpoa 7501 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ℂcc 11001 · cmul 11008 ∗ccj 15000 ℑcim 15002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: sigarim 46888 sigarac 46889 sigaraf 46890 sigarmf 46891 sigarls 46894 sigarid 46895 sigardiv 46898 sharhght 46902 |
| Copyright terms: Public domain | W3C validator |