| Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigarval | Structured version Visualization version GIF version | ||
| Description: Define the signed area by treating complex numbers as vectors with two components. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
| Ref | Expression |
|---|---|
| sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
| Ref | Expression |
|---|---|
| sigarval | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) | |
| 2 | 1 | fveq2d 6865 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∗‘𝑥) = (∗‘𝐴)) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
| 4 | 2, 3 | oveq12d 7408 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((∗‘𝑥) · 𝑦) = ((∗‘𝐴) · 𝐵)) |
| 5 | 4 | fveq2d 6865 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (ℑ‘((∗‘𝑥) · 𝑦)) = (ℑ‘((∗‘𝐴) · 𝐵))) |
| 6 | sigar | . 2 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
| 7 | fvex 6874 | . 2 ⊢ (ℑ‘((∗‘𝐴) · 𝐵)) ∈ V | |
| 8 | 5, 6, 7 | ovmpoa 7547 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ℂcc 11073 · cmul 11080 ∗ccj 15069 ℑcim 15071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 |
| This theorem is referenced by: sigarim 46856 sigarac 46857 sigaraf 46858 sigarmf 46859 sigarls 46862 sigarid 46863 sigardiv 46866 sharhght 46870 |
| Copyright terms: Public domain | W3C validator |