![]() |
Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigardiv | Structured version Visualization version GIF version |
Description: If signed area between vectors 𝐵 − 𝐴 and 𝐶 − 𝐴 is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.) |
Ref | Expression |
---|---|
sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
sigardiv.a | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) |
sigardiv.b | ⊢ (𝜑 → ¬ 𝐶 = 𝐴) |
sigardiv.c | ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = 0) |
Ref | Expression |
---|---|
sigardiv | ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigardiv.a | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) | |
2 | 1 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
3 | 1 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
4 | 2, 3 | subcld 11647 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
5 | 1 | simp3d 1144 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
6 | 5, 3 | subcld 11647 | . . . . . 6 ⊢ (𝜑 → (𝐶 − 𝐴) ∈ ℂ) |
7 | sigardiv.b | . . . . . . . 8 ⊢ (𝜑 → ¬ 𝐶 = 𝐴) | |
8 | 7 | neqned 2953 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
9 | 5, 3, 8 | subne0d 11656 | . . . . . 6 ⊢ (𝜑 → (𝐶 − 𝐴) ≠ 0) |
10 | 4, 6, 9 | cjdivd 15272 | . . . . 5 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) = ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴)))) |
11 | 4 | cjcld 15245 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐵 − 𝐴)) ∈ ℂ) |
12 | 6 | cjcld 15245 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐶 − 𝐴)) ∈ ℂ) |
13 | 6, 9 | cjne0d 15252 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐶 − 𝐴)) ≠ 0) |
14 | 11, 12, 6, 13, 9 | divcan5rd 12097 | . . . . . 6 ⊢ (𝜑 → (((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) / ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) = ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴)))) |
15 | 11, 6 | mulcld 11310 | . . . . . . . 8 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℂ) |
16 | sigar | . . . . . . . . . . 11 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
17 | 16 | sigarval 46771 | . . . . . . . . . 10 ⊢ (((𝐵 − 𝐴) ∈ ℂ ∧ (𝐶 − 𝐴) ∈ ℂ) → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)))) |
18 | 4, 6, 17 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)))) |
19 | sigardiv.c | . . . . . . . . 9 ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = 0) | |
20 | 18, 19 | eqtr3d 2782 | . . . . . . . 8 ⊢ (𝜑 → (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴))) = 0) |
21 | 15, 20 | reim0bd 15249 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℝ) |
22 | 6, 12 | mulcomd 11311 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶 − 𝐴) · (∗‘(𝐶 − 𝐴))) = ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) |
23 | 6 | cjmulrcld 15255 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶 − 𝐴) · (∗‘(𝐶 − 𝐴))) ∈ ℝ) |
24 | 22, 23 | eqeltrrd 2845 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℝ) |
25 | 12, 6, 13, 9 | mulne0d 11942 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴)) ≠ 0) |
26 | 21, 24, 25 | redivcld 12122 | . . . . . 6 ⊢ (𝜑 → (((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) / ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) ∈ ℝ) |
27 | 14, 26 | eqeltrrd 2845 | . . . . 5 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴))) ∈ ℝ) |
28 | 10, 27 | eqeltrd 2844 | . . . 4 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) ∈ ℝ) |
29 | 28 | cjred 15275 | . . 3 ⊢ (𝜑 → (∗‘(∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) = (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) |
30 | 4, 6, 9 | divcld 12070 | . . . 4 ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℂ) |
31 | 30 | cjcjd 15248 | . . 3 ⊢ (𝜑 → (∗‘(∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) = ((𝐵 − 𝐴) / (𝐶 − 𝐴))) |
32 | 29, 31 | eqtr3d 2782 | . 2 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) = ((𝐵 − 𝐴) / (𝐶 − 𝐴))) |
33 | 32, 28 | eqeltrrd 2845 | 1 ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ℂcc 11182 ℝcr 11183 0cc0 11184 · cmul 11189 − cmin 11520 / cdiv 11947 ∗ccj 15145 ℑcim 15147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-cj 15148 df-re 15149 df-im 15150 |
This theorem is referenced by: sigarcol 46785 sharhght 46786 |
Copyright terms: Public domain | W3C validator |