| Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigardiv | Structured version Visualization version GIF version | ||
| Description: If signed area between vectors 𝐵 − 𝐴 and 𝐶 − 𝐴 is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.) |
| Ref | Expression |
|---|---|
| sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
| sigardiv.a | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) |
| sigardiv.b | ⊢ (𝜑 → ¬ 𝐶 = 𝐴) |
| sigardiv.c | ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = 0) |
| Ref | Expression |
|---|---|
| sigardiv | ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sigardiv.a | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) | |
| 2 | 1 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 3 | 1 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 4 | 2, 3 | subcld 11483 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
| 5 | 1 | simp3d 1144 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 6 | 5, 3 | subcld 11483 | . . . . . 6 ⊢ (𝜑 → (𝐶 − 𝐴) ∈ ℂ) |
| 7 | sigardiv.b | . . . . . . . 8 ⊢ (𝜑 → ¬ 𝐶 = 𝐴) | |
| 8 | 7 | neqned 2936 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
| 9 | 5, 3, 8 | subne0d 11492 | . . . . . 6 ⊢ (𝜑 → (𝐶 − 𝐴) ≠ 0) |
| 10 | 4, 6, 9 | cjdivd 15137 | . . . . 5 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) = ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴)))) |
| 11 | 4 | cjcld 15110 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐵 − 𝐴)) ∈ ℂ) |
| 12 | 6 | cjcld 15110 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐶 − 𝐴)) ∈ ℂ) |
| 13 | 6, 9 | cjne0d 15117 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐶 − 𝐴)) ≠ 0) |
| 14 | 11, 12, 6, 13, 9 | divcan5rd 11935 | . . . . . 6 ⊢ (𝜑 → (((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) / ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) = ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴)))) |
| 15 | 11, 6 | mulcld 11143 | . . . . . . . 8 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℂ) |
| 16 | sigar | . . . . . . . . . . 11 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
| 17 | 16 | sigarval 47010 | . . . . . . . . . 10 ⊢ (((𝐵 − 𝐴) ∈ ℂ ∧ (𝐶 − 𝐴) ∈ ℂ) → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)))) |
| 18 | 4, 6, 17 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)))) |
| 19 | sigardiv.c | . . . . . . . . 9 ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = 0) | |
| 20 | 18, 19 | eqtr3d 2770 | . . . . . . . 8 ⊢ (𝜑 → (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴))) = 0) |
| 21 | 15, 20 | reim0bd 15114 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℝ) |
| 22 | 6, 12 | mulcomd 11144 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶 − 𝐴) · (∗‘(𝐶 − 𝐴))) = ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) |
| 23 | 6 | cjmulrcld 15120 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶 − 𝐴) · (∗‘(𝐶 − 𝐴))) ∈ ℝ) |
| 24 | 22, 23 | eqeltrrd 2834 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℝ) |
| 25 | 12, 6, 13, 9 | mulne0d 11780 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴)) ≠ 0) |
| 26 | 21, 24, 25 | redivcld 11960 | . . . . . 6 ⊢ (𝜑 → (((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) / ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) ∈ ℝ) |
| 27 | 14, 26 | eqeltrrd 2834 | . . . . 5 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴))) ∈ ℝ) |
| 28 | 10, 27 | eqeltrd 2833 | . . . 4 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) ∈ ℝ) |
| 29 | 28 | cjred 15140 | . . 3 ⊢ (𝜑 → (∗‘(∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) = (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) |
| 30 | 4, 6, 9 | divcld 11908 | . . . 4 ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℂ) |
| 31 | 30 | cjcjd 15113 | . . 3 ⊢ (𝜑 → (∗‘(∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) = ((𝐵 − 𝐴) / (𝐶 − 𝐴))) |
| 32 | 29, 31 | eqtr3d 2770 | . 2 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) = ((𝐵 − 𝐴) / (𝐶 − 𝐴))) |
| 33 | 32, 28 | eqeltrrd 2834 | 1 ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 ℂcc 11015 ℝcr 11016 0cc0 11017 · cmul 11022 − cmin 11355 / cdiv 11785 ∗ccj 15010 ℑcim 15012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-cj 15013 df-re 15014 df-im 15015 |
| This theorem is referenced by: sigarcol 47024 sharhght 47025 |
| Copyright terms: Public domain | W3C validator |