| Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigardiv | Structured version Visualization version GIF version | ||
| Description: If signed area between vectors 𝐵 − 𝐴 and 𝐶 − 𝐴 is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.) |
| Ref | Expression |
|---|---|
| sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
| sigardiv.a | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) |
| sigardiv.b | ⊢ (𝜑 → ¬ 𝐶 = 𝐴) |
| sigardiv.c | ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = 0) |
| Ref | Expression |
|---|---|
| sigardiv | ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sigardiv.a | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) | |
| 2 | 1 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 3 | 1 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 4 | 2, 3 | subcld 11509 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
| 5 | 1 | simp3d 1144 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 6 | 5, 3 | subcld 11509 | . . . . . 6 ⊢ (𝜑 → (𝐶 − 𝐴) ∈ ℂ) |
| 7 | sigardiv.b | . . . . . . . 8 ⊢ (𝜑 → ¬ 𝐶 = 𝐴) | |
| 8 | 7 | neqned 2932 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
| 9 | 5, 3, 8 | subne0d 11518 | . . . . . 6 ⊢ (𝜑 → (𝐶 − 𝐴) ≠ 0) |
| 10 | 4, 6, 9 | cjdivd 15165 | . . . . 5 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) = ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴)))) |
| 11 | 4 | cjcld 15138 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐵 − 𝐴)) ∈ ℂ) |
| 12 | 6 | cjcld 15138 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐶 − 𝐴)) ∈ ℂ) |
| 13 | 6, 9 | cjne0d 15145 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐶 − 𝐴)) ≠ 0) |
| 14 | 11, 12, 6, 13, 9 | divcan5rd 11961 | . . . . . 6 ⊢ (𝜑 → (((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) / ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) = ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴)))) |
| 15 | 11, 6 | mulcld 11170 | . . . . . . . 8 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℂ) |
| 16 | sigar | . . . . . . . . . . 11 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
| 17 | 16 | sigarval 46821 | . . . . . . . . . 10 ⊢ (((𝐵 − 𝐴) ∈ ℂ ∧ (𝐶 − 𝐴) ∈ ℂ) → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)))) |
| 18 | 4, 6, 17 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)))) |
| 19 | sigardiv.c | . . . . . . . . 9 ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = 0) | |
| 20 | 18, 19 | eqtr3d 2766 | . . . . . . . 8 ⊢ (𝜑 → (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴))) = 0) |
| 21 | 15, 20 | reim0bd 15142 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℝ) |
| 22 | 6, 12 | mulcomd 11171 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶 − 𝐴) · (∗‘(𝐶 − 𝐴))) = ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) |
| 23 | 6 | cjmulrcld 15148 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶 − 𝐴) · (∗‘(𝐶 − 𝐴))) ∈ ℝ) |
| 24 | 22, 23 | eqeltrrd 2829 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℝ) |
| 25 | 12, 6, 13, 9 | mulne0d 11806 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴)) ≠ 0) |
| 26 | 21, 24, 25 | redivcld 11986 | . . . . . 6 ⊢ (𝜑 → (((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) / ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) ∈ ℝ) |
| 27 | 14, 26 | eqeltrrd 2829 | . . . . 5 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴))) ∈ ℝ) |
| 28 | 10, 27 | eqeltrd 2828 | . . . 4 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) ∈ ℝ) |
| 29 | 28 | cjred 15168 | . . 3 ⊢ (𝜑 → (∗‘(∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) = (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) |
| 30 | 4, 6, 9 | divcld 11934 | . . . 4 ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℂ) |
| 31 | 30 | cjcjd 15141 | . . 3 ⊢ (𝜑 → (∗‘(∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) = ((𝐵 − 𝐴) / (𝐶 − 𝐴))) |
| 32 | 29, 31 | eqtr3d 2766 | . 2 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) = ((𝐵 − 𝐴) / (𝐶 − 𝐴))) |
| 33 | 32, 28 | eqeltrrd 2829 | 1 ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ℂcc 11042 ℝcr 11043 0cc0 11044 · cmul 11049 − cmin 11381 / cdiv 11811 ∗ccj 15038 ℑcim 15040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-cj 15041 df-re 15042 df-im 15043 |
| This theorem is referenced by: sigarcol 46835 sharhght 46836 |
| Copyright terms: Public domain | W3C validator |