Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigardiv Structured version   Visualization version   GIF version

Theorem sigardiv 43401
Description: If signed area between vectors 𝐵𝐴 and 𝐶𝐴 is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.)
Hypotheses
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sigardiv.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sigardiv.b (𝜑 → ¬ 𝐶 = 𝐴)
sigardiv.c (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = 0)
Assertion
Ref Expression
sigardiv (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℝ)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigardiv
StepHypRef Expression
1 sigardiv.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp2d 1140 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
31simp1d 1139 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
42, 3subcld 10995 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
51simp3d 1141 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
65, 3subcld 10995 . . . . . 6 (𝜑 → (𝐶𝐴) ∈ ℂ)
7 sigardiv.b . . . . . . . 8 (𝜑 → ¬ 𝐶 = 𝐴)
87neqned 3021 . . . . . . 7 (𝜑𝐶𝐴)
95, 3, 8subne0d 11004 . . . . . 6 (𝜑 → (𝐶𝐴) ≠ 0)
104, 6, 9cjdivd 14582 . . . . 5 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) = ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))))
114cjcld 14555 . . . . . . 7 (𝜑 → (∗‘(𝐵𝐴)) ∈ ℂ)
126cjcld 14555 . . . . . . 7 (𝜑 → (∗‘(𝐶𝐴)) ∈ ℂ)
136, 9cjne0d 14562 . . . . . . 7 (𝜑 → (∗‘(𝐶𝐴)) ≠ 0)
1411, 12, 6, 13, 9divcan5rd 11441 . . . . . 6 (𝜑 → (((∗‘(𝐵𝐴)) · (𝐶𝐴)) / ((∗‘(𝐶𝐴)) · (𝐶𝐴))) = ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))))
1511, 6mulcld 10659 . . . . . . . 8 (𝜑 → ((∗‘(𝐵𝐴)) · (𝐶𝐴)) ∈ ℂ)
16 sigar . . . . . . . . . . 11 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1716sigarval 43390 . . . . . . . . . 10 (((𝐵𝐴) ∈ ℂ ∧ (𝐶𝐴) ∈ ℂ) → ((𝐵𝐴)𝐺(𝐶𝐴)) = (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))))
184, 6, 17syl2anc 587 . . . . . . . . 9 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))))
19 sigardiv.c . . . . . . . . 9 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = 0)
2018, 19eqtr3d 2861 . . . . . . . 8 (𝜑 → (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))) = 0)
2115, 20reim0bd 14559 . . . . . . 7 (𝜑 → ((∗‘(𝐵𝐴)) · (𝐶𝐴)) ∈ ℝ)
226, 12mulcomd 10660 . . . . . . . 8 (𝜑 → ((𝐶𝐴) · (∗‘(𝐶𝐴))) = ((∗‘(𝐶𝐴)) · (𝐶𝐴)))
236cjmulrcld 14565 . . . . . . . 8 (𝜑 → ((𝐶𝐴) · (∗‘(𝐶𝐴))) ∈ ℝ)
2422, 23eqeltrrd 2917 . . . . . . 7 (𝜑 → ((∗‘(𝐶𝐴)) · (𝐶𝐴)) ∈ ℝ)
2512, 6, 13, 9mulne0d 11290 . . . . . . 7 (𝜑 → ((∗‘(𝐶𝐴)) · (𝐶𝐴)) ≠ 0)
2621, 24, 25redivcld 11466 . . . . . 6 (𝜑 → (((∗‘(𝐵𝐴)) · (𝐶𝐴)) / ((∗‘(𝐶𝐴)) · (𝐶𝐴))) ∈ ℝ)
2714, 26eqeltrrd 2917 . . . . 5 (𝜑 → ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))) ∈ ℝ)
2810, 27eqeltrd 2916 . . . 4 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) ∈ ℝ)
2928cjred 14585 . . 3 (𝜑 → (∗‘(∗‘((𝐵𝐴) / (𝐶𝐴)))) = (∗‘((𝐵𝐴) / (𝐶𝐴))))
304, 6, 9divcld 11414 . . . 4 (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℂ)
3130cjcjd 14558 . . 3 (𝜑 → (∗‘(∗‘((𝐵𝐴) / (𝐶𝐴)))) = ((𝐵𝐴) / (𝐶𝐴)))
3229, 31eqtr3d 2861 . 2 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) = ((𝐵𝐴) / (𝐶𝐴)))
3332, 28eqeltrrd 2917 1 (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1084   = wceq 1538  wcel 2115  cfv 6343  (class class class)co 7149  cmpo 7151  cc 10533  cr 10534  0cc0 10535   · cmul 10540  cmin 10868   / cdiv 11295  ccj 14455  cim 14457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-2 11697  df-cj 14458  df-re 14459  df-im 14460
This theorem is referenced by:  sigarcol  43404  sharhght  43405
  Copyright terms: Public domain W3C validator