| Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigardiv | Structured version Visualization version GIF version | ||
| Description: If signed area between vectors 𝐵 − 𝐴 and 𝐶 − 𝐴 is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.) |
| Ref | Expression |
|---|---|
| sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
| sigardiv.a | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) |
| sigardiv.b | ⊢ (𝜑 → ¬ 𝐶 = 𝐴) |
| sigardiv.c | ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = 0) |
| Ref | Expression |
|---|---|
| sigardiv | ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sigardiv.a | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) | |
| 2 | 1 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 3 | 1 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 4 | 2, 3 | subcld 11533 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
| 5 | 1 | simp3d 1144 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 6 | 5, 3 | subcld 11533 | . . . . . 6 ⊢ (𝜑 → (𝐶 − 𝐴) ∈ ℂ) |
| 7 | sigardiv.b | . . . . . . . 8 ⊢ (𝜑 → ¬ 𝐶 = 𝐴) | |
| 8 | 7 | neqned 2932 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
| 9 | 5, 3, 8 | subne0d 11542 | . . . . . 6 ⊢ (𝜑 → (𝐶 − 𝐴) ≠ 0) |
| 10 | 4, 6, 9 | cjdivd 15189 | . . . . 5 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) = ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴)))) |
| 11 | 4 | cjcld 15162 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐵 − 𝐴)) ∈ ℂ) |
| 12 | 6 | cjcld 15162 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐶 − 𝐴)) ∈ ℂ) |
| 13 | 6, 9 | cjne0d 15169 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐶 − 𝐴)) ≠ 0) |
| 14 | 11, 12, 6, 13, 9 | divcan5rd 11985 | . . . . . 6 ⊢ (𝜑 → (((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) / ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) = ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴)))) |
| 15 | 11, 6 | mulcld 11194 | . . . . . . . 8 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℂ) |
| 16 | sigar | . . . . . . . . . . 11 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
| 17 | 16 | sigarval 46848 | . . . . . . . . . 10 ⊢ (((𝐵 − 𝐴) ∈ ℂ ∧ (𝐶 − 𝐴) ∈ ℂ) → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)))) |
| 18 | 4, 6, 17 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)))) |
| 19 | sigardiv.c | . . . . . . . . 9 ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = 0) | |
| 20 | 18, 19 | eqtr3d 2766 | . . . . . . . 8 ⊢ (𝜑 → (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴))) = 0) |
| 21 | 15, 20 | reim0bd 15166 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℝ) |
| 22 | 6, 12 | mulcomd 11195 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶 − 𝐴) · (∗‘(𝐶 − 𝐴))) = ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) |
| 23 | 6 | cjmulrcld 15172 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶 − 𝐴) · (∗‘(𝐶 − 𝐴))) ∈ ℝ) |
| 24 | 22, 23 | eqeltrrd 2829 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℝ) |
| 25 | 12, 6, 13, 9 | mulne0d 11830 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴)) ≠ 0) |
| 26 | 21, 24, 25 | redivcld 12010 | . . . . . 6 ⊢ (𝜑 → (((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) / ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) ∈ ℝ) |
| 27 | 14, 26 | eqeltrrd 2829 | . . . . 5 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴))) ∈ ℝ) |
| 28 | 10, 27 | eqeltrd 2828 | . . . 4 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) ∈ ℝ) |
| 29 | 28 | cjred 15192 | . . 3 ⊢ (𝜑 → (∗‘(∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) = (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) |
| 30 | 4, 6, 9 | divcld 11958 | . . . 4 ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℂ) |
| 31 | 30 | cjcjd 15165 | . . 3 ⊢ (𝜑 → (∗‘(∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) = ((𝐵 − 𝐴) / (𝐶 − 𝐴))) |
| 32 | 29, 31 | eqtr3d 2766 | . 2 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) = ((𝐵 − 𝐴) / (𝐶 − 𝐴))) |
| 33 | 32, 28 | eqeltrrd 2829 | 1 ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ℂcc 11066 ℝcr 11067 0cc0 11068 · cmul 11073 − cmin 11405 / cdiv 11835 ∗ccj 15062 ℑcim 15064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-cj 15065 df-re 15066 df-im 15067 |
| This theorem is referenced by: sigarcol 46862 sharhght 46863 |
| Copyright terms: Public domain | W3C validator |