Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigardiv Structured version   Visualization version   GIF version

Theorem sigardiv 44621
Description: If signed area between vectors 𝐵𝐴 and 𝐶𝐴 is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.)
Hypotheses
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sigardiv.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sigardiv.b (𝜑 → ¬ 𝐶 = 𝐴)
sigardiv.c (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = 0)
Assertion
Ref Expression
sigardiv (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℝ)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigardiv
StepHypRef Expression
1 sigardiv.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp2d 1143 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
31simp1d 1142 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
42, 3subcld 11382 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
51simp3d 1144 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
65, 3subcld 11382 . . . . . 6 (𝜑 → (𝐶𝐴) ∈ ℂ)
7 sigardiv.b . . . . . . . 8 (𝜑 → ¬ 𝐶 = 𝐴)
87neqned 2948 . . . . . . 7 (𝜑𝐶𝐴)
95, 3, 8subne0d 11391 . . . . . 6 (𝜑 → (𝐶𝐴) ≠ 0)
104, 6, 9cjdivd 14983 . . . . 5 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) = ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))))
114cjcld 14956 . . . . . . 7 (𝜑 → (∗‘(𝐵𝐴)) ∈ ℂ)
126cjcld 14956 . . . . . . 7 (𝜑 → (∗‘(𝐶𝐴)) ∈ ℂ)
136, 9cjne0d 14963 . . . . . . 7 (𝜑 → (∗‘(𝐶𝐴)) ≠ 0)
1411, 12, 6, 13, 9divcan5rd 11828 . . . . . 6 (𝜑 → (((∗‘(𝐵𝐴)) · (𝐶𝐴)) / ((∗‘(𝐶𝐴)) · (𝐶𝐴))) = ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))))
1511, 6mulcld 11045 . . . . . . . 8 (𝜑 → ((∗‘(𝐵𝐴)) · (𝐶𝐴)) ∈ ℂ)
16 sigar . . . . . . . . . . 11 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1716sigarval 44610 . . . . . . . . . 10 (((𝐵𝐴) ∈ ℂ ∧ (𝐶𝐴) ∈ ℂ) → ((𝐵𝐴)𝐺(𝐶𝐴)) = (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))))
184, 6, 17syl2anc 585 . . . . . . . . 9 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))))
19 sigardiv.c . . . . . . . . 9 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = 0)
2018, 19eqtr3d 2778 . . . . . . . 8 (𝜑 → (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))) = 0)
2115, 20reim0bd 14960 . . . . . . 7 (𝜑 → ((∗‘(𝐵𝐴)) · (𝐶𝐴)) ∈ ℝ)
226, 12mulcomd 11046 . . . . . . . 8 (𝜑 → ((𝐶𝐴) · (∗‘(𝐶𝐴))) = ((∗‘(𝐶𝐴)) · (𝐶𝐴)))
236cjmulrcld 14966 . . . . . . . 8 (𝜑 → ((𝐶𝐴) · (∗‘(𝐶𝐴))) ∈ ℝ)
2422, 23eqeltrrd 2838 . . . . . . 7 (𝜑 → ((∗‘(𝐶𝐴)) · (𝐶𝐴)) ∈ ℝ)
2512, 6, 13, 9mulne0d 11677 . . . . . . 7 (𝜑 → ((∗‘(𝐶𝐴)) · (𝐶𝐴)) ≠ 0)
2621, 24, 25redivcld 11853 . . . . . 6 (𝜑 → (((∗‘(𝐵𝐴)) · (𝐶𝐴)) / ((∗‘(𝐶𝐴)) · (𝐶𝐴))) ∈ ℝ)
2714, 26eqeltrrd 2838 . . . . 5 (𝜑 → ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))) ∈ ℝ)
2810, 27eqeltrd 2837 . . . 4 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) ∈ ℝ)
2928cjred 14986 . . 3 (𝜑 → (∗‘(∗‘((𝐵𝐴) / (𝐶𝐴)))) = (∗‘((𝐵𝐴) / (𝐶𝐴))))
304, 6, 9divcld 11801 . . . 4 (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℂ)
3130cjcjd 14959 . . 3 (𝜑 → (∗‘(∗‘((𝐵𝐴) / (𝐶𝐴)))) = ((𝐵𝐴) / (𝐶𝐴)))
3229, 31eqtr3d 2778 . 2 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) = ((𝐵𝐴) / (𝐶𝐴)))
3332, 28eqeltrrd 2838 1 (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1087   = wceq 1539  wcel 2104  cfv 6458  (class class class)co 7307  cmpo 7309  cc 10919  cr 10920  0cc0 10921   · cmul 10926  cmin 11255   / cdiv 11682  ccj 14856  cim 14858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-2 12086  df-cj 14859  df-re 14860  df-im 14861
This theorem is referenced by:  sigarcol  44624  sharhght  44625
  Copyright terms: Public domain W3C validator