Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigardiv Structured version   Visualization version   GIF version

Theorem sigardiv 46817
Description: If signed area between vectors 𝐵𝐴 and 𝐶𝐴 is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.)
Hypotheses
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sigardiv.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sigardiv.b (𝜑 → ¬ 𝐶 = 𝐴)
sigardiv.c (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = 0)
Assertion
Ref Expression
sigardiv (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℝ)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigardiv
StepHypRef Expression
1 sigardiv.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp2d 1142 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
31simp1d 1141 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
42, 3subcld 11618 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
51simp3d 1143 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
65, 3subcld 11618 . . . . . 6 (𝜑 → (𝐶𝐴) ∈ ℂ)
7 sigardiv.b . . . . . . . 8 (𝜑 → ¬ 𝐶 = 𝐴)
87neqned 2945 . . . . . . 7 (𝜑𝐶𝐴)
95, 3, 8subne0d 11627 . . . . . 6 (𝜑 → (𝐶𝐴) ≠ 0)
104, 6, 9cjdivd 15259 . . . . 5 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) = ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))))
114cjcld 15232 . . . . . . 7 (𝜑 → (∗‘(𝐵𝐴)) ∈ ℂ)
126cjcld 15232 . . . . . . 7 (𝜑 → (∗‘(𝐶𝐴)) ∈ ℂ)
136, 9cjne0d 15239 . . . . . . 7 (𝜑 → (∗‘(𝐶𝐴)) ≠ 0)
1411, 12, 6, 13, 9divcan5rd 12068 . . . . . 6 (𝜑 → (((∗‘(𝐵𝐴)) · (𝐶𝐴)) / ((∗‘(𝐶𝐴)) · (𝐶𝐴))) = ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))))
1511, 6mulcld 11279 . . . . . . . 8 (𝜑 → ((∗‘(𝐵𝐴)) · (𝐶𝐴)) ∈ ℂ)
16 sigar . . . . . . . . . . 11 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1716sigarval 46806 . . . . . . . . . 10 (((𝐵𝐴) ∈ ℂ ∧ (𝐶𝐴) ∈ ℂ) → ((𝐵𝐴)𝐺(𝐶𝐴)) = (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))))
184, 6, 17syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))))
19 sigardiv.c . . . . . . . . 9 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = 0)
2018, 19eqtr3d 2777 . . . . . . . 8 (𝜑 → (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))) = 0)
2115, 20reim0bd 15236 . . . . . . 7 (𝜑 → ((∗‘(𝐵𝐴)) · (𝐶𝐴)) ∈ ℝ)
226, 12mulcomd 11280 . . . . . . . 8 (𝜑 → ((𝐶𝐴) · (∗‘(𝐶𝐴))) = ((∗‘(𝐶𝐴)) · (𝐶𝐴)))
236cjmulrcld 15242 . . . . . . . 8 (𝜑 → ((𝐶𝐴) · (∗‘(𝐶𝐴))) ∈ ℝ)
2422, 23eqeltrrd 2840 . . . . . . 7 (𝜑 → ((∗‘(𝐶𝐴)) · (𝐶𝐴)) ∈ ℝ)
2512, 6, 13, 9mulne0d 11913 . . . . . . 7 (𝜑 → ((∗‘(𝐶𝐴)) · (𝐶𝐴)) ≠ 0)
2621, 24, 25redivcld 12093 . . . . . 6 (𝜑 → (((∗‘(𝐵𝐴)) · (𝐶𝐴)) / ((∗‘(𝐶𝐴)) · (𝐶𝐴))) ∈ ℝ)
2714, 26eqeltrrd 2840 . . . . 5 (𝜑 → ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))) ∈ ℝ)
2810, 27eqeltrd 2839 . . . 4 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) ∈ ℝ)
2928cjred 15262 . . 3 (𝜑 → (∗‘(∗‘((𝐵𝐴) / (𝐶𝐴)))) = (∗‘((𝐵𝐴) / (𝐶𝐴))))
304, 6, 9divcld 12041 . . . 4 (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℂ)
3130cjcjd 15235 . . 3 (𝜑 → (∗‘(∗‘((𝐵𝐴) / (𝐶𝐴)))) = ((𝐵𝐴) / (𝐶𝐴)))
3229, 31eqtr3d 2777 . 2 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) = ((𝐵𝐴) / (𝐶𝐴)))
3332, 28eqeltrrd 2840 1 (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  cmpo 7433  cc 11151  cr 11152  0cc0 11153   · cmul 11158  cmin 11490   / cdiv 11918  ccj 15132  cim 15134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-cj 15135  df-re 15136  df-im 15137
This theorem is referenced by:  sigarcol  46820  sharhght  46821
  Copyright terms: Public domain W3C validator