Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigardiv | Structured version Visualization version GIF version |
Description: If signed area between vectors 𝐵 − 𝐴 and 𝐶 − 𝐴 is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.) |
Ref | Expression |
---|---|
sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
sigardiv.a | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) |
sigardiv.b | ⊢ (𝜑 → ¬ 𝐶 = 𝐴) |
sigardiv.c | ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = 0) |
Ref | Expression |
---|---|
sigardiv | ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigardiv.a | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) | |
2 | 1 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
3 | 1 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
4 | 2, 3 | subcld 11382 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
5 | 1 | simp3d 1144 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
6 | 5, 3 | subcld 11382 | . . . . . 6 ⊢ (𝜑 → (𝐶 − 𝐴) ∈ ℂ) |
7 | sigardiv.b | . . . . . . . 8 ⊢ (𝜑 → ¬ 𝐶 = 𝐴) | |
8 | 7 | neqned 2948 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
9 | 5, 3, 8 | subne0d 11391 | . . . . . 6 ⊢ (𝜑 → (𝐶 − 𝐴) ≠ 0) |
10 | 4, 6, 9 | cjdivd 14983 | . . . . 5 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) = ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴)))) |
11 | 4 | cjcld 14956 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐵 − 𝐴)) ∈ ℂ) |
12 | 6 | cjcld 14956 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐶 − 𝐴)) ∈ ℂ) |
13 | 6, 9 | cjne0d 14963 | . . . . . . 7 ⊢ (𝜑 → (∗‘(𝐶 − 𝐴)) ≠ 0) |
14 | 11, 12, 6, 13, 9 | divcan5rd 11828 | . . . . . 6 ⊢ (𝜑 → (((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) / ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) = ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴)))) |
15 | 11, 6 | mulcld 11045 | . . . . . . . 8 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℂ) |
16 | sigar | . . . . . . . . . . 11 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
17 | 16 | sigarval 44610 | . . . . . . . . . 10 ⊢ (((𝐵 − 𝐴) ∈ ℂ ∧ (𝐶 − 𝐴) ∈ ℂ) → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)))) |
18 | 4, 6, 17 | syl2anc 585 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)))) |
19 | sigardiv.c | . . . . . . . . 9 ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = 0) | |
20 | 18, 19 | eqtr3d 2778 | . . . . . . . 8 ⊢ (𝜑 → (ℑ‘((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴))) = 0) |
21 | 15, 20 | reim0bd 14960 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℝ) |
22 | 6, 12 | mulcomd 11046 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶 − 𝐴) · (∗‘(𝐶 − 𝐴))) = ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) |
23 | 6 | cjmulrcld 14966 | . . . . . . . 8 ⊢ (𝜑 → ((𝐶 − 𝐴) · (∗‘(𝐶 − 𝐴))) ∈ ℝ) |
24 | 22, 23 | eqeltrrd 2838 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴)) ∈ ℝ) |
25 | 12, 6, 13, 9 | mulne0d 11677 | . . . . . . 7 ⊢ (𝜑 → ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴)) ≠ 0) |
26 | 21, 24, 25 | redivcld 11853 | . . . . . 6 ⊢ (𝜑 → (((∗‘(𝐵 − 𝐴)) · (𝐶 − 𝐴)) / ((∗‘(𝐶 − 𝐴)) · (𝐶 − 𝐴))) ∈ ℝ) |
27 | 14, 26 | eqeltrrd 2838 | . . . . 5 ⊢ (𝜑 → ((∗‘(𝐵 − 𝐴)) / (∗‘(𝐶 − 𝐴))) ∈ ℝ) |
28 | 10, 27 | eqeltrd 2837 | . . . 4 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) ∈ ℝ) |
29 | 28 | cjred 14986 | . . 3 ⊢ (𝜑 → (∗‘(∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) = (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) |
30 | 4, 6, 9 | divcld 11801 | . . . 4 ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℂ) |
31 | 30 | cjcjd 14959 | . . 3 ⊢ (𝜑 → (∗‘(∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴)))) = ((𝐵 − 𝐴) / (𝐶 − 𝐴))) |
32 | 29, 31 | eqtr3d 2778 | . 2 ⊢ (𝜑 → (∗‘((𝐵 − 𝐴) / (𝐶 − 𝐴))) = ((𝐵 − 𝐴) / (𝐶 − 𝐴))) |
33 | 32, 28 | eqeltrrd 2838 | 1 ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 ∈ cmpo 7309 ℂcc 10919 ℝcr 10920 0cc0 10921 · cmul 10926 − cmin 11255 / cdiv 11682 ∗ccj 14856 ℑcim 14858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-2 12086 df-cj 14859 df-re 14860 df-im 14861 |
This theorem is referenced by: sigarcol 44624 sharhght 44625 |
Copyright terms: Public domain | W3C validator |