Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarid Structured version   Visualization version   GIF version

Theorem sigarid 43122
Description: Signed area of a flat parallelogram is zero. (Contributed by Saveliy Skresanov, 20-Sep-2017.)
Hypothesis
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
Assertion
Ref Expression
sigarid (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = 0)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem sigarid
StepHypRef Expression
1 sigar . . . 4 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
21sigarval 43114 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴𝐺𝐴) = (ℑ‘((∗‘𝐴) · 𝐴)))
32anidms 569 . 2 (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = (ℑ‘((∗‘𝐴) · 𝐴)))
4 cjcl 14467 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
5 id 22 . . . . 5 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
64, 5mulcomd 10665 . . . 4 (𝐴 ∈ ℂ → ((∗‘𝐴) · 𝐴) = (𝐴 · (∗‘𝐴)))
7 cjmulrcl 14506 . . . 4 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ)
86, 7eqeltrd 2916 . . 3 (𝐴 ∈ ℂ → ((∗‘𝐴) · 𝐴) ∈ ℝ)
98reim0d 14587 . 2 (𝐴 ∈ ℂ → (ℑ‘((∗‘𝐴) · 𝐴)) = 0)
103, 9eqtrd 2859 1 (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  cfv 6358  (class class class)co 7159  cmpo 7161  cc 10538  cr 10539  0cc0 10540   · cmul 10545  ccj 14458  cim 14460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-2 11703  df-cj 14461  df-re 14462  df-im 14463
This theorem is referenced by:  sigarexp  43123  sigarcol  43128
  Copyright terms: Public domain W3C validator