Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarid Structured version   Visualization version   GIF version

Theorem sigarid 46764
Description: Signed area of a flat parallelogram is zero. (Contributed by Saveliy Skresanov, 20-Sep-2017.)
Hypothesis
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
Assertion
Ref Expression
sigarid (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = 0)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem sigarid
StepHypRef Expression
1 sigar . . . 4 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
21sigarval 46756 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴𝐺𝐴) = (ℑ‘((∗‘𝐴) · 𝐴)))
32anidms 566 . 2 (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = (ℑ‘((∗‘𝐴) · 𝐴)))
4 cjcl 15130 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
5 id 22 . . . . 5 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
64, 5mulcomd 11273 . . . 4 (𝐴 ∈ ℂ → ((∗‘𝐴) · 𝐴) = (𝐴 · (∗‘𝐴)))
7 cjmulrcl 15169 . . . 4 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ)
86, 7eqeltrd 2837 . . 3 (𝐴 ∈ ℂ → ((∗‘𝐴) · 𝐴) ∈ ℝ)
98reim0d 15250 . 2 (𝐴 ∈ ℂ → (ℑ‘((∗‘𝐴) · 𝐴)) = 0)
103, 9eqtrd 2773 1 (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1535  wcel 2104  cfv 6558  (class class class)co 7425  cmpo 7427  cc 11144  cr 11145  0cc0 11146   · cmul 11151  ccj 15121  cim 15123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-riota 7381  df-ov 7428  df-oprab 7429  df-mpo 7430  df-er 8738  df-en 8979  df-dom 8980  df-sdom 8981  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11485  df-neg 11486  df-div 11912  df-2 12320  df-cj 15124  df-re 15125  df-im 15126
This theorem is referenced by:  sigarexp  46765  sigarcol  46770
  Copyright terms: Public domain W3C validator