![]() |
Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigarid | Structured version Visualization version GIF version |
Description: Signed area of a flat parallelogram is zero. (Contributed by Saveliy Skresanov, 20-Sep-2017.) |
Ref | Expression |
---|---|
sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
Ref | Expression |
---|---|
sigarid | ⊢ (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigar | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
2 | 1 | sigarval 46761 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴𝐺𝐴) = (ℑ‘((∗‘𝐴) · 𝐴))) |
3 | 2 | anidms 566 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = (ℑ‘((∗‘𝐴) · 𝐴))) |
4 | cjcl 15148 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
5 | id 22 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
6 | 4, 5 | mulcomd 11305 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((∗‘𝐴) · 𝐴) = (𝐴 · (∗‘𝐴))) |
7 | cjmulrcl 15187 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ) | |
8 | 6, 7 | eqeltrd 2844 | . . 3 ⊢ (𝐴 ∈ ℂ → ((∗‘𝐴) · 𝐴) ∈ ℝ) |
9 | 8 | reim0d 15268 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘((∗‘𝐴) · 𝐴)) = 0) |
10 | 3, 9 | eqtrd 2780 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6568 (class class class)co 7443 ∈ cmpo 7445 ℂcc 11176 ℝcr 11177 0cc0 11178 · cmul 11183 ∗ccj 15139 ℑcim 15141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-er 8757 df-en 8998 df-dom 8999 df-sdom 9000 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-div 11942 df-2 12350 df-cj 15142 df-re 15143 df-im 15144 |
This theorem is referenced by: sigarexp 46770 sigarcol 46775 |
Copyright terms: Public domain | W3C validator |