| Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaraf | Structured version Visualization version GIF version | ||
| Description: Signed area is additive by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
| Ref | Expression |
|---|---|
| sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
| Ref | Expression |
|---|---|
| sigaraf | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) + (𝐶𝐺𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjadd 15113 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘(𝐴 + 𝐶)) = ((∗‘𝐴) + (∗‘𝐶))) | |
| 2 | 1 | oveq1d 7404 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴 + 𝐶)) · 𝐵) = (((∗‘𝐴) + (∗‘𝐶)) · 𝐵)) |
| 3 | 2 | 3adant2 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴 + 𝐶)) · 𝐵) = (((∗‘𝐴) + (∗‘𝐶)) · 𝐵)) |
| 4 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 5 | 4 | cjcld 15168 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘𝐴) ∈ ℂ) |
| 6 | simp3 1138 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
| 7 | 6 | cjcld 15168 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘𝐶) ∈ ℂ) |
| 8 | simp2 1137 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 9 | 5, 7, 8 | adddird 11205 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((∗‘𝐴) + (∗‘𝐶)) · 𝐵) = (((∗‘𝐴) · 𝐵) + ((∗‘𝐶) · 𝐵))) |
| 10 | 3, 9 | eqtrd 2765 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴 + 𝐶)) · 𝐵) = (((∗‘𝐴) · 𝐵) + ((∗‘𝐶) · 𝐵))) |
| 11 | 10 | fveq2d 6864 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘((∗‘(𝐴 + 𝐶)) · 𝐵)) = (ℑ‘(((∗‘𝐴) · 𝐵) + ((∗‘𝐶) · 𝐵)))) |
| 12 | 5, 8 | mulcld 11200 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘𝐴) · 𝐵) ∈ ℂ) |
| 13 | 7, 8 | mulcld 11200 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘𝐶) · 𝐵) ∈ ℂ) |
| 14 | 12, 13 | imaddd 15187 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘(((∗‘𝐴) · 𝐵) + ((∗‘𝐶) · 𝐵))) = ((ℑ‘((∗‘𝐴) · 𝐵)) + (ℑ‘((∗‘𝐶) · 𝐵)))) |
| 15 | 11, 14 | eqtrd 2765 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘((∗‘(𝐴 + 𝐶)) · 𝐵)) = ((ℑ‘((∗‘𝐴) · 𝐵)) + (ℑ‘((∗‘𝐶) · 𝐵)))) |
| 16 | 4, 6 | addcld 11199 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + 𝐶) ∈ ℂ) |
| 17 | sigar | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
| 18 | 17 | sigarval 46841 | . . 3 ⊢ (((𝐴 + 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = (ℑ‘((∗‘(𝐴 + 𝐶)) · 𝐵))) |
| 19 | 16, 8, 18 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = (ℑ‘((∗‘(𝐴 + 𝐶)) · 𝐵))) |
| 20 | 17 | sigarval 46841 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
| 21 | 20 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
| 22 | 3simpc 1150 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) | |
| 23 | 22 | ancomd 461 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
| 24 | 17 | sigarval 46841 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐺𝐵) = (ℑ‘((∗‘𝐶) · 𝐵))) |
| 25 | 23, 24 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐵) = (ℑ‘((∗‘𝐶) · 𝐵))) |
| 26 | 21, 25 | oveq12d 7407 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐺𝐵) + (𝐶𝐺𝐵)) = ((ℑ‘((∗‘𝐴) · 𝐵)) + (ℑ‘((∗‘𝐶) · 𝐵)))) |
| 27 | 15, 19, 26 | 3eqtr4d 2775 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) + (𝐶𝐺𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 ℂcc 11072 + caddc 11077 · cmul 11079 ∗ccj 15068 ℑcim 15070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-cj 15071 df-re 15072 df-im 15073 |
| This theorem is referenced by: sigaras 46846 sharhght 46856 |
| Copyright terms: Public domain | W3C validator |