![]() |
Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaraf | Structured version Visualization version GIF version |
Description: Signed area is additive by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
Ref | Expression |
---|---|
sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
Ref | Expression |
---|---|
sigaraf | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) + (𝐶𝐺𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjadd 14361 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘(𝐴 + 𝐶)) = ((∗‘𝐴) + (∗‘𝐶))) | |
2 | 1 | oveq1d 6991 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴 + 𝐶)) · 𝐵) = (((∗‘𝐴) + (∗‘𝐶)) · 𝐵)) |
3 | 2 | 3adant2 1111 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴 + 𝐶)) · 𝐵) = (((∗‘𝐴) + (∗‘𝐶)) · 𝐵)) |
4 | simp1 1116 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ) | |
5 | 4 | cjcld 14416 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘𝐴) ∈ ℂ) |
6 | simp3 1118 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
7 | 6 | cjcld 14416 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘𝐶) ∈ ℂ) |
8 | simp2 1117 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ) | |
9 | 5, 7, 8 | adddird 10465 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((∗‘𝐴) + (∗‘𝐶)) · 𝐵) = (((∗‘𝐴) · 𝐵) + ((∗‘𝐶) · 𝐵))) |
10 | 3, 9 | eqtrd 2815 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴 + 𝐶)) · 𝐵) = (((∗‘𝐴) · 𝐵) + ((∗‘𝐶) · 𝐵))) |
11 | 10 | fveq2d 6503 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘((∗‘(𝐴 + 𝐶)) · 𝐵)) = (ℑ‘(((∗‘𝐴) · 𝐵) + ((∗‘𝐶) · 𝐵)))) |
12 | 5, 8 | mulcld 10460 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘𝐴) · 𝐵) ∈ ℂ) |
13 | 7, 8 | mulcld 10460 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘𝐶) · 𝐵) ∈ ℂ) |
14 | 12, 13 | imaddd 14435 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘(((∗‘𝐴) · 𝐵) + ((∗‘𝐶) · 𝐵))) = ((ℑ‘((∗‘𝐴) · 𝐵)) + (ℑ‘((∗‘𝐶) · 𝐵)))) |
15 | 11, 14 | eqtrd 2815 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘((∗‘(𝐴 + 𝐶)) · 𝐵)) = ((ℑ‘((∗‘𝐴) · 𝐵)) + (ℑ‘((∗‘𝐶) · 𝐵)))) |
16 | 4, 6 | addcld 10459 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + 𝐶) ∈ ℂ) |
17 | sigar | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
18 | 17 | sigarval 42536 | . . 3 ⊢ (((𝐴 + 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = (ℑ‘((∗‘(𝐴 + 𝐶)) · 𝐵))) |
19 | 16, 8, 18 | syl2anc 576 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = (ℑ‘((∗‘(𝐴 + 𝐶)) · 𝐵))) |
20 | 17 | sigarval 42536 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
21 | 20 | 3adant3 1112 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
22 | 3simpc 1130 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) | |
23 | 22 | ancomd 454 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
24 | 17 | sigarval 42536 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐺𝐵) = (ℑ‘((∗‘𝐶) · 𝐵))) |
25 | 23, 24 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐵) = (ℑ‘((∗‘𝐶) · 𝐵))) |
26 | 21, 25 | oveq12d 6994 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐺𝐵) + (𝐶𝐺𝐵)) = ((ℑ‘((∗‘𝐴) · 𝐵)) + (ℑ‘((∗‘𝐶) · 𝐵)))) |
27 | 15, 19, 26 | 3eqtr4d 2825 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) + (𝐶𝐺𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ‘cfv 6188 (class class class)co 6976 ∈ cmpo 6978 ℂcc 10333 + caddc 10338 · cmul 10340 ∗ccj 14316 ℑcim 14318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-po 5326 df-so 5327 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-2 11503 df-cj 14319 df-re 14320 df-im 14321 |
This theorem is referenced by: sigaras 42541 sharhght 42551 |
Copyright terms: Public domain | W3C validator |