Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaraf Structured version   Visualization version   GIF version

Theorem sigaraf 41562
Description: Signed area is additive by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.)
Hypothesis
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
Assertion
Ref Expression
sigaraf ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) + (𝐶𝐺𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem sigaraf
StepHypRef Expression
1 cjadd 14089 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘(𝐴 + 𝐶)) = ((∗‘𝐴) + (∗‘𝐶)))
21oveq1d 6808 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴 + 𝐶)) · 𝐵) = (((∗‘𝐴) + (∗‘𝐶)) · 𝐵))
323adant2 1125 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴 + 𝐶)) · 𝐵) = (((∗‘𝐴) + (∗‘𝐶)) · 𝐵))
4 simp1 1130 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
54cjcld 14144 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘𝐴) ∈ ℂ)
6 simp3 1132 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
76cjcld 14144 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘𝐶) ∈ ℂ)
8 simp2 1131 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
95, 7, 8adddird 10267 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((∗‘𝐴) + (∗‘𝐶)) · 𝐵) = (((∗‘𝐴) · 𝐵) + ((∗‘𝐶) · 𝐵)))
103, 9eqtrd 2805 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴 + 𝐶)) · 𝐵) = (((∗‘𝐴) · 𝐵) + ((∗‘𝐶) · 𝐵)))
1110fveq2d 6336 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘((∗‘(𝐴 + 𝐶)) · 𝐵)) = (ℑ‘(((∗‘𝐴) · 𝐵) + ((∗‘𝐶) · 𝐵))))
125, 8mulcld 10262 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘𝐴) · 𝐵) ∈ ℂ)
137, 8mulcld 10262 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘𝐶) · 𝐵) ∈ ℂ)
1412, 13imaddd 14163 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘(((∗‘𝐴) · 𝐵) + ((∗‘𝐶) · 𝐵))) = ((ℑ‘((∗‘𝐴) · 𝐵)) + (ℑ‘((∗‘𝐶) · 𝐵))))
1511, 14eqtrd 2805 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘((∗‘(𝐴 + 𝐶)) · 𝐵)) = ((ℑ‘((∗‘𝐴) · 𝐵)) + (ℑ‘((∗‘𝐶) · 𝐵))))
164, 6addcld 10261 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + 𝐶) ∈ ℂ)
17 sigar . . . 4 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1817sigarval 41559 . . 3 (((𝐴 + 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = (ℑ‘((∗‘(𝐴 + 𝐶)) · 𝐵)))
1916, 8, 18syl2anc 573 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = (ℑ‘((∗‘(𝐴 + 𝐶)) · 𝐵)))
2017sigarval 41559 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵)))
21203adant3 1126 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵)))
22 3simpc 1146 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
2322ancomd 453 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ))
2417sigarval 41559 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐺𝐵) = (ℑ‘((∗‘𝐶) · 𝐵)))
2523, 24syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐵) = (ℑ‘((∗‘𝐶) · 𝐵)))
2621, 25oveq12d 6811 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐺𝐵) + (𝐶𝐺𝐵)) = ((ℑ‘((∗‘𝐴) · 𝐵)) + (ℑ‘((∗‘𝐶) · 𝐵))))
2715, 19, 263eqtr4d 2815 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) + (𝐶𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  cmpt2 6795  cc 10136   + caddc 10141   · cmul 10143  ccj 14044  cim 14046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-2 11281  df-cj 14047  df-re 14048  df-im 14049
This theorem is referenced by:  sigaras  41564  sharhght  41574
  Copyright terms: Public domain W3C validator