Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarls Structured version   Visualization version   GIF version

Theorem sigarls 46478
Description: Signed area is linear by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.)
Hypothesis
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
Assertion
Ref Expression
sigarls ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = ((𝐴𝐺𝐵) · 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem sigarls
StepHypRef Expression
1 simp1 1133 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
21cjcld 15201 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (∗‘𝐴) ∈ ℂ)
3 simp2 1134 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
4 simpr 483 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
54recnd 11292 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
653adant1 1127 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
72, 3, 6mulassd 11287 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (((∗‘𝐴) · 𝐵) · 𝐶) = ((∗‘𝐴) · (𝐵 · 𝐶)))
87fveq2d 6905 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶))))
9 simp3 1135 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
102, 3mulcld 11284 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((∗‘𝐴) · 𝐵) ∈ ℂ)
119, 10immul2d 15233 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(𝐶 · ((∗‘𝐴) · 𝐵))) = (𝐶 · (ℑ‘((∗‘𝐴) · 𝐵))))
1210, 6mulcomd 11285 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (((∗‘𝐴) · 𝐵) · 𝐶) = (𝐶 · ((∗‘𝐴) · 𝐵)))
1312fveq2d 6905 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = (ℑ‘(𝐶 · ((∗‘𝐴) · 𝐵))))
14 imcl 15116 . . . . . . 7 (((∗‘𝐴) · 𝐵) ∈ ℂ → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℝ)
1514recnd 11292 . . . . . 6 (((∗‘𝐴) · 𝐵) ∈ ℂ → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℂ)
1610, 15syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℂ)
1716, 6mulcomd 11285 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶) = (𝐶 · (ℑ‘((∗‘𝐴) · 𝐵))))
1811, 13, 173eqtr4d 2776 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶))
198, 18eqtr3d 2768 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶))) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶))
20 simpl 481 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
2120, 5mulcld 11284 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℂ)
22213adant1 1127 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℂ)
23 sigar . . . 4 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
2423sigarval 46471 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) → (𝐴𝐺(𝐵 · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶))))
251, 22, 24syl2anc 582 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶))))
2623sigarval 46471 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵)))
27263adant3 1129 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵)))
2827oveq1d 7439 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐺𝐵) · 𝐶) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶))
2919, 25, 283eqtr4d 2776 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = ((𝐴𝐺𝐵) · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  cfv 6554  (class class class)co 7424  cmpo 7426  cc 11156  cr 11157   · cmul 11163  ccj 15101  cim 15103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-2 12327  df-cj 15104  df-re 15105  df-im 15106
This theorem is referenced by:  sigarcol  46485  sharhght  46486  sigaradd  46487
  Copyright terms: Public domain W3C validator