![]() |
Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigarls | Structured version Visualization version GIF version |
Description: Signed area is linear by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
Ref | Expression |
---|---|
sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
Ref | Expression |
---|---|
sigarls | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = ((𝐴𝐺𝐵) · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ) | |
2 | 1 | cjcld 15232 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (∗‘𝐴) ∈ ℂ) |
3 | simp2 1136 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) | |
4 | simpr 484 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
5 | 4 | recnd 11287 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
6 | 5 | 3adant1 1129 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
7 | 2, 3, 6 | mulassd 11282 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (((∗‘𝐴) · 𝐵) · 𝐶) = ((∗‘𝐴) · (𝐵 · 𝐶))) |
8 | 7 | fveq2d 6911 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶)))) |
9 | simp3 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
10 | 2, 3 | mulcld 11279 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((∗‘𝐴) · 𝐵) ∈ ℂ) |
11 | 9, 10 | immul2d 15264 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(𝐶 · ((∗‘𝐴) · 𝐵))) = (𝐶 · (ℑ‘((∗‘𝐴) · 𝐵)))) |
12 | 10, 6 | mulcomd 11280 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (((∗‘𝐴) · 𝐵) · 𝐶) = (𝐶 · ((∗‘𝐴) · 𝐵))) |
13 | 12 | fveq2d 6911 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = (ℑ‘(𝐶 · ((∗‘𝐴) · 𝐵)))) |
14 | imcl 15147 | . . . . . . 7 ⊢ (((∗‘𝐴) · 𝐵) ∈ ℂ → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℝ) | |
15 | 14 | recnd 11287 | . . . . . 6 ⊢ (((∗‘𝐴) · 𝐵) ∈ ℂ → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℂ) |
16 | 10, 15 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℂ) |
17 | 16, 6 | mulcomd 11280 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶) = (𝐶 · (ℑ‘((∗‘𝐴) · 𝐵)))) |
18 | 11, 13, 17 | 3eqtr4d 2785 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶)) |
19 | 8, 18 | eqtr3d 2777 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶))) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶)) |
20 | simpl 482 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) | |
21 | 20, 5 | mulcld 11279 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℂ) |
22 | 21 | 3adant1 1129 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℂ) |
23 | sigar | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
24 | 23 | sigarval 46806 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) → (𝐴𝐺(𝐵 · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶)))) |
25 | 1, 22, 24 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶)))) |
26 | 23 | sigarval 46806 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
27 | 26 | 3adant3 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
28 | 27 | oveq1d 7446 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐺𝐵) · 𝐶) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶)) |
29 | 19, 25, 28 | 3eqtr4d 2785 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = ((𝐴𝐺𝐵) · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 ℂcc 11151 ℝcr 11152 · cmul 11158 ∗ccj 15132 ℑcim 15134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-2 12327 df-cj 15135 df-re 15136 df-im 15137 |
This theorem is referenced by: sigarcol 46820 sharhght 46821 sigaradd 46822 |
Copyright terms: Public domain | W3C validator |