Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarls Structured version   Visualization version   GIF version

Theorem sigarls 46979
Description: Signed area is linear by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.)
Hypothesis
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
Assertion
Ref Expression
sigarls ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = ((𝐴𝐺𝐵) · 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem sigarls
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
21cjcld 15105 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (∗‘𝐴) ∈ ℂ)
3 simp2 1137 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
4 simpr 484 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
54recnd 11147 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
653adant1 1130 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
72, 3, 6mulassd 11142 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (((∗‘𝐴) · 𝐵) · 𝐶) = ((∗‘𝐴) · (𝐵 · 𝐶)))
87fveq2d 6832 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶))))
9 simp3 1138 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
102, 3mulcld 11139 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((∗‘𝐴) · 𝐵) ∈ ℂ)
119, 10immul2d 15137 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(𝐶 · ((∗‘𝐴) · 𝐵))) = (𝐶 · (ℑ‘((∗‘𝐴) · 𝐵))))
1210, 6mulcomd 11140 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (((∗‘𝐴) · 𝐵) · 𝐶) = (𝐶 · ((∗‘𝐴) · 𝐵)))
1312fveq2d 6832 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = (ℑ‘(𝐶 · ((∗‘𝐴) · 𝐵))))
14 imcl 15020 . . . . . . 7 (((∗‘𝐴) · 𝐵) ∈ ℂ → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℝ)
1514recnd 11147 . . . . . 6 (((∗‘𝐴) · 𝐵) ∈ ℂ → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℂ)
1610, 15syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℂ)
1716, 6mulcomd 11140 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶) = (𝐶 · (ℑ‘((∗‘𝐴) · 𝐵))))
1811, 13, 173eqtr4d 2778 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶))
198, 18eqtr3d 2770 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶))) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶))
20 simpl 482 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
2120, 5mulcld 11139 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℂ)
22213adant1 1130 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℂ)
23 sigar . . . 4 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
2423sigarval 46972 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) → (𝐴𝐺(𝐵 · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶))))
251, 22, 24syl2anc 584 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶))))
2623sigarval 46972 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵)))
27263adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵)))
2827oveq1d 7367 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐺𝐵) · 𝐶) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶))
2919, 25, 283eqtr4d 2778 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = ((𝐴𝐺𝐵) · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  cmpo 7354  cc 11011  cr 11012   · cmul 11018  ccj 15005  cim 15007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-cj 15008  df-re 15009  df-im 15010
This theorem is referenced by:  sigarcol  46986  sharhght  46987  sigaradd  46988
  Copyright terms: Public domain W3C validator