Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigarls | Structured version Visualization version GIF version |
Description: Signed area is linear by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
Ref | Expression |
---|---|
sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
Ref | Expression |
---|---|
sigarls | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = ((𝐴𝐺𝐵) · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ) | |
2 | 1 | cjcld 14835 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (∗‘𝐴) ∈ ℂ) |
3 | simp2 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) | |
4 | simpr 484 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
5 | 4 | recnd 10934 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
6 | 5 | 3adant1 1128 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
7 | 2, 3, 6 | mulassd 10929 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (((∗‘𝐴) · 𝐵) · 𝐶) = ((∗‘𝐴) · (𝐵 · 𝐶))) |
8 | 7 | fveq2d 6760 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶)))) |
9 | simp3 1136 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
10 | 2, 3 | mulcld 10926 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((∗‘𝐴) · 𝐵) ∈ ℂ) |
11 | 9, 10 | immul2d 14867 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(𝐶 · ((∗‘𝐴) · 𝐵))) = (𝐶 · (ℑ‘((∗‘𝐴) · 𝐵)))) |
12 | 10, 6 | mulcomd 10927 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (((∗‘𝐴) · 𝐵) · 𝐶) = (𝐶 · ((∗‘𝐴) · 𝐵))) |
13 | 12 | fveq2d 6760 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = (ℑ‘(𝐶 · ((∗‘𝐴) · 𝐵)))) |
14 | imcl 14750 | . . . . . . 7 ⊢ (((∗‘𝐴) · 𝐵) ∈ ℂ → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℝ) | |
15 | 14 | recnd 10934 | . . . . . 6 ⊢ (((∗‘𝐴) · 𝐵) ∈ ℂ → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℂ) |
16 | 10, 15 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘((∗‘𝐴) · 𝐵)) ∈ ℂ) |
17 | 16, 6 | mulcomd 10927 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶) = (𝐶 · (ℑ‘((∗‘𝐴) · 𝐵)))) |
18 | 11, 13, 17 | 3eqtr4d 2788 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘(((∗‘𝐴) · 𝐵) · 𝐶)) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶)) |
19 | 8, 18 | eqtr3d 2780 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶))) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶)) |
20 | simpl 482 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) | |
21 | 20, 5 | mulcld 10926 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℂ) |
22 | 21 | 3adant1 1128 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℂ) |
23 | sigar | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
24 | 23 | sigarval 44253 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) → (𝐴𝐺(𝐵 · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶)))) |
25 | 1, 22, 24 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = (ℑ‘((∗‘𝐴) · (𝐵 · 𝐶)))) |
26 | 23 | sigarval 44253 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
27 | 26 | 3adant3 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
28 | 27 | oveq1d 7270 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐺𝐵) · 𝐶) = ((ℑ‘((∗‘𝐴) · 𝐵)) · 𝐶)) |
29 | 19, 25, 28 | 3eqtr4d 2788 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = ((𝐴𝐺𝐵) · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ℂcc 10800 ℝcr 10801 · cmul 10807 ∗ccj 14735 ℑcim 14737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-cj 14738 df-re 14739 df-im 14740 |
This theorem is referenced by: sigarcol 44267 sharhght 44268 sigaradd 44269 |
Copyright terms: Public domain | W3C validator |