Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarac Structured version   Visualization version   GIF version

Theorem sigarac 46833
Description: Signed area is anticommutative. (Contributed by Saveliy Skresanov, 19-Sep-2017.)
Hypothesis
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
Assertion
Ref Expression
sigarac ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem sigarac
StepHypRef Expression
1 sigar . . . 4 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
21sigarval 46831 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵)))
3 cjcl 15012 . . . . . . 7 (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ)
43adantl 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐵) ∈ ℂ)
5 simpl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
64, 5cjmuld 15128 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘((∗‘𝐵) · 𝐴)) = ((∗‘(∗‘𝐵)) · (∗‘𝐴)))
7 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
87cjcjd 15106 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(∗‘𝐵)) = 𝐵)
98oveq1d 7364 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘(∗‘𝐵)) · (∗‘𝐴)) = (𝐵 · (∗‘𝐴)))
105cjcld 15103 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘𝐴) ∈ ℂ)
117, 10mulcomd 11136 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐵))
126, 9, 113eqtrrd 2769 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · 𝐵) = (∗‘((∗‘𝐵) · 𝐴)))
1312fveq2d 6826 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘((∗‘𝐴) · 𝐵)) = (ℑ‘(∗‘((∗‘𝐵) · 𝐴))))
144, 5mulcld 11135 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐵) · 𝐴) ∈ ℂ)
1514imcjd 15112 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(∗‘((∗‘𝐵) · 𝐴))) = -(ℑ‘((∗‘𝐵) · 𝐴)))
162, 13, 153eqtrd 2768 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = -(ℑ‘((∗‘𝐵) · 𝐴)))
171sigarval 46831 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐺𝐴) = (ℑ‘((∗‘𝐵) · 𝐴)))
1817ancoms 458 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵𝐺𝐴) = (ℑ‘((∗‘𝐵) · 𝐴)))
1918negeqd 11357 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐵𝐺𝐴) = -(ℑ‘((∗‘𝐵) · 𝐴)))
2016, 19eqtr4d 2767 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  cmpo 7351  cc 11007   · cmul 11014  -cneg 11348  ccj 15003  cim 15005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-cj 15006  df-re 15007  df-im 15008
This theorem is referenced by:  sigaras  46836  sigarms  46837  sigarperm  46841  sigariz  46844  sigarcol  46845  sigaradd  46847  cevathlem2  46849
  Copyright terms: Public domain W3C validator