Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarac Structured version   Visualization version   GIF version

Theorem sigarac 45558
Description: Signed area is anticommutative. (Contributed by Saveliy Skresanov, 19-Sep-2017.)
Hypothesis
Ref Expression
sigar ๐บ = (๐‘ฅ โˆˆ โ„‚, ๐‘ฆ โˆˆ โ„‚ โ†ฆ (โ„‘โ€˜((โˆ—โ€˜๐‘ฅ) ยท ๐‘ฆ)))
Assertion
Ref Expression
sigarac ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด๐บ๐ต) = -(๐ต๐บ๐ด))
Distinct variable groups:   ๐‘ฅ,๐‘ฆ,๐ด   ๐‘ฅ,๐ต,๐‘ฆ
Allowed substitution hints:   ๐บ(๐‘ฅ,๐‘ฆ)

Proof of Theorem sigarac
StepHypRef Expression
1 sigar . . . 4 ๐บ = (๐‘ฅ โˆˆ โ„‚, ๐‘ฆ โˆˆ โ„‚ โ†ฆ (โ„‘โ€˜((โˆ—โ€˜๐‘ฅ) ยท ๐‘ฆ)))
21sigarval 45556 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด๐บ๐ต) = (โ„‘โ€˜((โˆ—โ€˜๐ด) ยท ๐ต)))
3 cjcl 15051 . . . . . . 7 (๐ต โˆˆ โ„‚ โ†’ (โˆ—โ€˜๐ต) โˆˆ โ„‚)
43adantl 482 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โˆ—โ€˜๐ต) โˆˆ โ„‚)
5 simpl 483 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ๐ด โˆˆ โ„‚)
64, 5cjmuld 15167 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โˆ—โ€˜((โˆ—โ€˜๐ต) ยท ๐ด)) = ((โˆ—โ€˜(โˆ—โ€˜๐ต)) ยท (โˆ—โ€˜๐ด)))
7 simpr 485 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ๐ต โˆˆ โ„‚)
87cjcjd 15145 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โˆ—โ€˜(โˆ—โ€˜๐ต)) = ๐ต)
98oveq1d 7423 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((โˆ—โ€˜(โˆ—โ€˜๐ต)) ยท (โˆ—โ€˜๐ด)) = (๐ต ยท (โˆ—โ€˜๐ด)))
105cjcld 15142 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โˆ—โ€˜๐ด) โˆˆ โ„‚)
117, 10mulcomd 11234 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ต ยท (โˆ—โ€˜๐ด)) = ((โˆ—โ€˜๐ด) ยท ๐ต))
126, 9, 113eqtrrd 2777 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((โˆ—โ€˜๐ด) ยท ๐ต) = (โˆ—โ€˜((โˆ—โ€˜๐ต) ยท ๐ด)))
1312fveq2d 6895 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜((โˆ—โ€˜๐ด) ยท ๐ต)) = (โ„‘โ€˜(โˆ—โ€˜((โˆ—โ€˜๐ต) ยท ๐ด))))
144, 5mulcld 11233 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((โˆ—โ€˜๐ต) ยท ๐ด) โˆˆ โ„‚)
1514imcjd 15151 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜(โˆ—โ€˜((โˆ—โ€˜๐ต) ยท ๐ด))) = -(โ„‘โ€˜((โˆ—โ€˜๐ต) ยท ๐ด)))
162, 13, 153eqtrd 2776 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด๐บ๐ต) = -(โ„‘โ€˜((โˆ—โ€˜๐ต) ยท ๐ด)))
171sigarval 45556 . . . 4 ((๐ต โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚) โ†’ (๐ต๐บ๐ด) = (โ„‘โ€˜((โˆ—โ€˜๐ต) ยท ๐ด)))
1817ancoms 459 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ต๐บ๐ด) = (โ„‘โ€˜((โˆ—โ€˜๐ต) ยท ๐ด)))
1918negeqd 11453 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ -(๐ต๐บ๐ด) = -(โ„‘โ€˜((โˆ—โ€˜๐ต) ยท ๐ด)))
2016, 19eqtr4d 2775 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด๐บ๐ต) = -(๐ต๐บ๐ด))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 396   = wceq 1541   โˆˆ wcel 2106  โ€˜cfv 6543  (class class class)co 7408   โˆˆ cmpo 7410  โ„‚cc 11107   ยท cmul 11114  -cneg 11444  โˆ—ccj 15042  โ„‘cim 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-2 12274  df-cj 15045  df-re 15046  df-im 15047
This theorem is referenced by:  sigaras  45561  sigarms  45562  sigarperm  45566  sigariz  45569  sigarcol  45570  sigaradd  45572  cevathlem2  45574
  Copyright terms: Public domain W3C validator