Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sharhght Structured version   Visualization version   GIF version

Theorem sharhght 46847
Description: Let 𝐴𝐵𝐶 be a triangle, and let 𝐷 lie on the line 𝐴𝐵. Then (doubled) areas of triangles 𝐴𝐷𝐶 and 𝐶𝐷𝐵 relate as lengths of corresponding bases 𝐴𝐷 and 𝐷𝐵. (Contributed by Saveliy Skresanov, 23-Sep-2017.)
Hypotheses
Ref Expression
sharhght.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sharhght.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sharhght.b (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
Assertion
Ref Expression
sharhght (𝜑 → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sharhght
StepHypRef Expression
1 sharhght.a . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp3d 1144 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
31simp1d 1142 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
42, 3subcld 11493 . . . . . . 7 (𝜑 → (𝐶𝐴) ∈ ℂ)
54adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐷) → (𝐶𝐴) ∈ ℂ)
6 sharhght.b . . . . . . . . 9 (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
76simpld 494 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
87, 3subcld 11493 . . . . . . 7 (𝜑 → (𝐷𝐴) ∈ ℂ)
98adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐷) → (𝐷𝐴) ∈ ℂ)
10 sharhght.sigar . . . . . . 7 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1110sigarim 46833 . . . . . 6 (((𝐶𝐴) ∈ ℂ ∧ (𝐷𝐴) ∈ ℂ) → ((𝐶𝐴)𝐺(𝐷𝐴)) ∈ ℝ)
125, 9, 11syl2anc 584 . . . . 5 ((𝜑𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) ∈ ℝ)
1312recnd 11162 . . . 4 ((𝜑𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) ∈ ℂ)
1413mul01d 11333 . . 3 ((𝜑𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · 0) = 0)
151simp2d 1143 . . . . . 6 (𝜑𝐵 ∈ ℂ)
1615adantr 480 . . . . 5 ((𝜑𝐵 = 𝐷) → 𝐵 ∈ ℂ)
17 simpr 484 . . . . 5 ((𝜑𝐵 = 𝐷) → 𝐵 = 𝐷)
1816, 17subeq0bd 11564 . . . 4 ((𝜑𝐵 = 𝐷) → (𝐵𝐷) = 0)
1918oveq2d 7369 . . 3 ((𝜑𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐴)𝐺(𝐷𝐴)) · 0))
202, 15subcld 11493 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
2120adantr 480 . . . . . . 7 ((𝜑𝐵 = 𝐷) → (𝐶𝐵) ∈ ℂ)
227, 15subcld 11493 . . . . . . . 8 (𝜑 → (𝐷𝐵) ∈ ℂ)
2322adantr 480 . . . . . . 7 ((𝜑𝐵 = 𝐷) → (𝐷𝐵) ∈ ℂ)
2410sigarval 46832 . . . . . . 7 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ) → ((𝐶𝐵)𝐺(𝐷𝐵)) = (ℑ‘((∗‘(𝐶𝐵)) · (𝐷𝐵))))
2521, 23, 24syl2anc 584 . . . . . 6 ((𝜑𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐵)) = (ℑ‘((∗‘(𝐶𝐵)) · (𝐷𝐵))))
267adantr 480 . . . . . . . . . 10 ((𝜑𝐵 = 𝐷) → 𝐷 ∈ ℂ)
2717eqcomd 2735 . . . . . . . . . 10 ((𝜑𝐵 = 𝐷) → 𝐷 = 𝐵)
2826, 27subeq0bd 11564 . . . . . . . . 9 ((𝜑𝐵 = 𝐷) → (𝐷𝐵) = 0)
2928oveq2d 7369 . . . . . . . 8 ((𝜑𝐵 = 𝐷) → ((∗‘(𝐶𝐵)) · (𝐷𝐵)) = ((∗‘(𝐶𝐵)) · 0))
3021cjcld 15121 . . . . . . . . 9 ((𝜑𝐵 = 𝐷) → (∗‘(𝐶𝐵)) ∈ ℂ)
3130mul01d 11333 . . . . . . . 8 ((𝜑𝐵 = 𝐷) → ((∗‘(𝐶𝐵)) · 0) = 0)
3229, 31eqtrd 2764 . . . . . . 7 ((𝜑𝐵 = 𝐷) → ((∗‘(𝐶𝐵)) · (𝐷𝐵)) = 0)
3332fveq2d 6830 . . . . . 6 ((𝜑𝐵 = 𝐷) → (ℑ‘((∗‘(𝐶𝐵)) · (𝐷𝐵))) = (ℑ‘0))
34 0red 11137 . . . . . . 7 ((𝜑𝐵 = 𝐷) → 0 ∈ ℝ)
3534reim0d 15150 . . . . . 6 ((𝜑𝐵 = 𝐷) → (ℑ‘0) = 0)
3625, 33, 353eqtrd 2768 . . . . 5 ((𝜑𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐵)) = 0)
3736oveq1d 7368 . . . 4 ((𝜑𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)) = (0 · (𝐴𝐷)))
383adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐷) → 𝐴 ∈ ℂ)
3938, 26subcld 11493 . . . . 5 ((𝜑𝐵 = 𝐷) → (𝐴𝐷) ∈ ℂ)
4039mul02d 11332 . . . 4 ((𝜑𝐵 = 𝐷) → (0 · (𝐴𝐷)) = 0)
4137, 40eqtrd 2764 . . 3 ((𝜑𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)) = 0)
4214, 19, 413eqtr4d 2774 . 2 ((𝜑𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
432adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐶 ∈ ℂ)
4415adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐵 ∈ ℂ)
453adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐴 ∈ ℂ)
4643, 44, 45npncand 11517 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵) + (𝐵𝐴)) = (𝐶𝐴))
4746oveq1d 7368 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵) + (𝐵𝐴))𝐺(𝐷𝐴)) = ((𝐶𝐴)𝐺(𝐷𝐴)))
4843, 44subcld 11493 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐶𝐵) ∈ ℂ)
498adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷𝐴) ∈ ℂ)
5044, 45subcld 11493 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐵𝐴) ∈ ℂ)
5110sigaraf 46835 . . . . . . . 8 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐴) ∈ ℂ ∧ (𝐵𝐴) ∈ ℂ) → (((𝐶𝐵) + (𝐵𝐴))𝐺(𝐷𝐴)) = (((𝐶𝐵)𝐺(𝐷𝐴)) + ((𝐵𝐴)𝐺(𝐷𝐴))))
5248, 49, 50, 51syl3anc 1373 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵) + (𝐵𝐴))𝐺(𝐷𝐴)) = (((𝐶𝐵)𝐺(𝐷𝐴)) + ((𝐵𝐴)𝐺(𝐷𝐴))))
5347, 52eqtr3d 2766 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) = (((𝐶𝐵)𝐺(𝐷𝐴)) + ((𝐵𝐴)𝐺(𝐷𝐴))))
546simprd 495 . . . . . . . . 9 (𝜑 → ((𝐴𝐷)𝐺(𝐵𝐷)) = 0)
5554adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐴𝐷)𝐺(𝐵𝐷)) = 0)
567adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐷 ∈ ℂ)
5710sigarperm 46842 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐴𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐴)𝐺(𝐷𝐴)))
5845, 44, 56, 57syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐴𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐴)𝐺(𝐷𝐴)))
5955, 58eqtr3d 2766 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 0 = ((𝐵𝐴)𝐺(𝐷𝐴)))
6059oveq2d 7369 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐴)) + 0) = (((𝐶𝐵)𝐺(𝐷𝐴)) + ((𝐵𝐴)𝐺(𝐷𝐴))))
6110sigarim 46833 . . . . . . . . 9 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐴) ∈ ℂ) → ((𝐶𝐵)𝐺(𝐷𝐴)) ∈ ℝ)
6248, 49, 61syl2anc 584 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐴)) ∈ ℝ)
6362recnd 11162 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐴)) ∈ ℂ)
6463addridd 11334 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐴)) + 0) = ((𝐶𝐵)𝐺(𝐷𝐴)))
6553, 60, 643eqtr2d 2770 . . . . 5 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) = ((𝐶𝐵)𝐺(𝐷𝐴)))
6644, 56negsubdi2d 11509 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → -(𝐵𝐷) = (𝐷𝐵))
6766eqcomd 2735 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷𝐵) = -(𝐵𝐷))
6867oveq1d 7368 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐷𝐵) / (𝐵𝐷)) = (-(𝐵𝐷) / (𝐵𝐷)))
6944, 56subcld 11493 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐵𝐷) ∈ ℂ)
70 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ¬ 𝐵 = 𝐷)
7170neqned 2932 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐵𝐷)
7244, 56, 71subne0d 11502 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐵𝐷) ≠ 0)
7369, 69, 72divnegd 11931 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → -((𝐵𝐷) / (𝐵𝐷)) = (-(𝐵𝐷) / (𝐵𝐷)))
7469, 72dividd 11916 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐵𝐷) / (𝐵𝐷)) = 1)
7574negeqd 11375 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → -((𝐵𝐷) / (𝐵𝐷)) = -1)
7668, 73, 753eqtr2d 2770 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐷𝐵) / (𝐵𝐷)) = -1)
7776oveq1d 7368 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐷𝐵) / (𝐵𝐷)) · (𝐴𝐷)) = (-1 · (𝐴𝐷)))
7845, 56subcld 11493 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐴𝐷) ∈ ℂ)
7978mulm1d 11590 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (-1 · (𝐴𝐷)) = -(𝐴𝐷))
8045, 56negsubdi2d 11509 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → -(𝐴𝐷) = (𝐷𝐴))
8177, 79, 803eqtrd 2768 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐷𝐵) / (𝐵𝐷)) · (𝐴𝐷)) = (𝐷𝐴))
8256, 44subcld 11493 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷𝐵) ∈ ℂ)
8382, 69, 78, 72div32d 11941 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐷𝐵) / (𝐵𝐷)) · (𝐴𝐷)) = ((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷))))
8481, 83eqtr3d 2766 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷𝐴) = ((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷))))
8584oveq2d 7369 . . . . 5 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐴)) = ((𝐶𝐵)𝐺((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷)))))
8656, 45, 443jca 1128 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
8710, 86, 70, 55sigardiv 46843 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐴𝐷) / (𝐵𝐷)) ∈ ℝ)
8810sigarls 46839 . . . . . 6 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ ∧ ((𝐴𝐷) / (𝐵𝐷)) ∈ ℝ) → ((𝐶𝐵)𝐺((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷)))) = (((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))))
8948, 82, 87, 88syl3anc 1373 . . . . 5 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷)))) = (((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))))
9065, 85, 893eqtrd 2768 . . . 4 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))))
9190oveq1d 7368 . . 3 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = ((((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))) · (𝐵𝐷)))
9210sigarim 46833 . . . . . 6 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ) → ((𝐶𝐵)𝐺(𝐷𝐵)) ∈ ℝ)
9392recnd 11162 . . . . 5 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ) → ((𝐶𝐵)𝐺(𝐷𝐵)) ∈ ℂ)
9448, 82, 93syl2anc 584 . . . 4 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐵)) ∈ ℂ)
9578, 69, 72divcld 11918 . . . 4 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐴𝐷) / (𝐵𝐷)) ∈ ℂ)
9694, 95, 69mulassd 11157 . . 3 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (((𝐴𝐷) / (𝐵𝐷)) · (𝐵𝐷))))
9778, 69, 72divcan1d 11919 . . . 4 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐴𝐷) / (𝐵𝐷)) · (𝐵𝐷)) = (𝐴𝐷))
9897oveq2d 7369 . . 3 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐵)) · (((𝐴𝐷) / (𝐵𝐷)) · (𝐵𝐷))) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
9991, 96, 983eqtrd 2768 . 2 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
10042, 99pm2.61dan 812 1 (𝜑 → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cmpo 7355  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  -cneg 11366   / cdiv 11795  ccj 15021  cim 15023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-cj 15024  df-re 15025  df-im 15026
This theorem is referenced by:  cevathlem2  46850
  Copyright terms: Public domain W3C validator