Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sharhght Structured version   Visualization version   GIF version

Theorem sharhght 46066
Description: Let 𝐴𝐵𝐶 be a triangle, and let 𝐷 lie on the line 𝐴𝐵. Then (doubled) areas of triangles 𝐴𝐷𝐶 and 𝐶𝐷𝐵 relate as lengths of corresponding bases 𝐴𝐷 and 𝐷𝐵. (Contributed by Saveliy Skresanov, 23-Sep-2017.)
Hypotheses
Ref Expression
sharhght.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sharhght.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sharhght.b (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
Assertion
Ref Expression
sharhght (𝜑 → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sharhght
StepHypRef Expression
1 sharhght.a . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp3d 1141 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
31simp1d 1139 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
42, 3subcld 11568 . . . . . . 7 (𝜑 → (𝐶𝐴) ∈ ℂ)
54adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐷) → (𝐶𝐴) ∈ ℂ)
6 sharhght.b . . . . . . . . 9 (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
76simpld 494 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
87, 3subcld 11568 . . . . . . 7 (𝜑 → (𝐷𝐴) ∈ ℂ)
98adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐷) → (𝐷𝐴) ∈ ℂ)
10 sharhght.sigar . . . . . . 7 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1110sigarim 46052 . . . . . 6 (((𝐶𝐴) ∈ ℂ ∧ (𝐷𝐴) ∈ ℂ) → ((𝐶𝐴)𝐺(𝐷𝐴)) ∈ ℝ)
125, 9, 11syl2anc 583 . . . . 5 ((𝜑𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) ∈ ℝ)
1312recnd 11239 . . . 4 ((𝜑𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) ∈ ℂ)
1413mul01d 11410 . . 3 ((𝜑𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · 0) = 0)
151simp2d 1140 . . . . . 6 (𝜑𝐵 ∈ ℂ)
1615adantr 480 . . . . 5 ((𝜑𝐵 = 𝐷) → 𝐵 ∈ ℂ)
17 simpr 484 . . . . 5 ((𝜑𝐵 = 𝐷) → 𝐵 = 𝐷)
1816, 17subeq0bd 11637 . . . 4 ((𝜑𝐵 = 𝐷) → (𝐵𝐷) = 0)
1918oveq2d 7417 . . 3 ((𝜑𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐴)𝐺(𝐷𝐴)) · 0))
202, 15subcld 11568 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
2120adantr 480 . . . . . . 7 ((𝜑𝐵 = 𝐷) → (𝐶𝐵) ∈ ℂ)
227, 15subcld 11568 . . . . . . . 8 (𝜑 → (𝐷𝐵) ∈ ℂ)
2322adantr 480 . . . . . . 7 ((𝜑𝐵 = 𝐷) → (𝐷𝐵) ∈ ℂ)
2410sigarval 46051 . . . . . . 7 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ) → ((𝐶𝐵)𝐺(𝐷𝐵)) = (ℑ‘((∗‘(𝐶𝐵)) · (𝐷𝐵))))
2521, 23, 24syl2anc 583 . . . . . 6 ((𝜑𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐵)) = (ℑ‘((∗‘(𝐶𝐵)) · (𝐷𝐵))))
267adantr 480 . . . . . . . . . 10 ((𝜑𝐵 = 𝐷) → 𝐷 ∈ ℂ)
2717eqcomd 2730 . . . . . . . . . 10 ((𝜑𝐵 = 𝐷) → 𝐷 = 𝐵)
2826, 27subeq0bd 11637 . . . . . . . . 9 ((𝜑𝐵 = 𝐷) → (𝐷𝐵) = 0)
2928oveq2d 7417 . . . . . . . 8 ((𝜑𝐵 = 𝐷) → ((∗‘(𝐶𝐵)) · (𝐷𝐵)) = ((∗‘(𝐶𝐵)) · 0))
3021cjcld 15140 . . . . . . . . 9 ((𝜑𝐵 = 𝐷) → (∗‘(𝐶𝐵)) ∈ ℂ)
3130mul01d 11410 . . . . . . . 8 ((𝜑𝐵 = 𝐷) → ((∗‘(𝐶𝐵)) · 0) = 0)
3229, 31eqtrd 2764 . . . . . . 7 ((𝜑𝐵 = 𝐷) → ((∗‘(𝐶𝐵)) · (𝐷𝐵)) = 0)
3332fveq2d 6885 . . . . . 6 ((𝜑𝐵 = 𝐷) → (ℑ‘((∗‘(𝐶𝐵)) · (𝐷𝐵))) = (ℑ‘0))
34 0red 11214 . . . . . . 7 ((𝜑𝐵 = 𝐷) → 0 ∈ ℝ)
3534reim0d 15169 . . . . . 6 ((𝜑𝐵 = 𝐷) → (ℑ‘0) = 0)
3625, 33, 353eqtrd 2768 . . . . 5 ((𝜑𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐵)) = 0)
3736oveq1d 7416 . . . 4 ((𝜑𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)) = (0 · (𝐴𝐷)))
383adantr 480 . . . . . 6 ((𝜑𝐵 = 𝐷) → 𝐴 ∈ ℂ)
3938, 26subcld 11568 . . . . 5 ((𝜑𝐵 = 𝐷) → (𝐴𝐷) ∈ ℂ)
4039mul02d 11409 . . . 4 ((𝜑𝐵 = 𝐷) → (0 · (𝐴𝐷)) = 0)
4137, 40eqtrd 2764 . . 3 ((𝜑𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)) = 0)
4214, 19, 413eqtr4d 2774 . 2 ((𝜑𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
432adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐶 ∈ ℂ)
4415adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐵 ∈ ℂ)
453adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐴 ∈ ℂ)
4643, 44, 45npncand 11592 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵) + (𝐵𝐴)) = (𝐶𝐴))
4746oveq1d 7416 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵) + (𝐵𝐴))𝐺(𝐷𝐴)) = ((𝐶𝐴)𝐺(𝐷𝐴)))
4843, 44subcld 11568 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐶𝐵) ∈ ℂ)
498adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷𝐴) ∈ ℂ)
5044, 45subcld 11568 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐵𝐴) ∈ ℂ)
5110sigaraf 46054 . . . . . . . 8 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐴) ∈ ℂ ∧ (𝐵𝐴) ∈ ℂ) → (((𝐶𝐵) + (𝐵𝐴))𝐺(𝐷𝐴)) = (((𝐶𝐵)𝐺(𝐷𝐴)) + ((𝐵𝐴)𝐺(𝐷𝐴))))
5248, 49, 50, 51syl3anc 1368 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵) + (𝐵𝐴))𝐺(𝐷𝐴)) = (((𝐶𝐵)𝐺(𝐷𝐴)) + ((𝐵𝐴)𝐺(𝐷𝐴))))
5347, 52eqtr3d 2766 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) = (((𝐶𝐵)𝐺(𝐷𝐴)) + ((𝐵𝐴)𝐺(𝐷𝐴))))
546simprd 495 . . . . . . . . 9 (𝜑 → ((𝐴𝐷)𝐺(𝐵𝐷)) = 0)
5554adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐴𝐷)𝐺(𝐵𝐷)) = 0)
567adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐷 ∈ ℂ)
5710sigarperm 46061 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐴𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐴)𝐺(𝐷𝐴)))
5845, 44, 56, 57syl3anc 1368 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐴𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐴)𝐺(𝐷𝐴)))
5955, 58eqtr3d 2766 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 0 = ((𝐵𝐴)𝐺(𝐷𝐴)))
6059oveq2d 7417 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐴)) + 0) = (((𝐶𝐵)𝐺(𝐷𝐴)) + ((𝐵𝐴)𝐺(𝐷𝐴))))
6110sigarim 46052 . . . . . . . . 9 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐴) ∈ ℂ) → ((𝐶𝐵)𝐺(𝐷𝐴)) ∈ ℝ)
6248, 49, 61syl2anc 583 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐴)) ∈ ℝ)
6362recnd 11239 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐴)) ∈ ℂ)
6463addridd 11411 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐴)) + 0) = ((𝐶𝐵)𝐺(𝐷𝐴)))
6553, 60, 643eqtr2d 2770 . . . . 5 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) = ((𝐶𝐵)𝐺(𝐷𝐴)))
6644, 56negsubdi2d 11584 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → -(𝐵𝐷) = (𝐷𝐵))
6766eqcomd 2730 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷𝐵) = -(𝐵𝐷))
6867oveq1d 7416 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐷𝐵) / (𝐵𝐷)) = (-(𝐵𝐷) / (𝐵𝐷)))
6944, 56subcld 11568 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐵𝐷) ∈ ℂ)
70 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ¬ 𝐵 = 𝐷)
7170neqned 2939 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐵𝐷)
7244, 56, 71subne0d 11577 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐵𝐷) ≠ 0)
7369, 69, 72divnegd 12000 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → -((𝐵𝐷) / (𝐵𝐷)) = (-(𝐵𝐷) / (𝐵𝐷)))
7469, 72dividd 11985 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐵𝐷) / (𝐵𝐷)) = 1)
7574negeqd 11451 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → -((𝐵𝐷) / (𝐵𝐷)) = -1)
7668, 73, 753eqtr2d 2770 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐷𝐵) / (𝐵𝐷)) = -1)
7776oveq1d 7416 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐷𝐵) / (𝐵𝐷)) · (𝐴𝐷)) = (-1 · (𝐴𝐷)))
7845, 56subcld 11568 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐴𝐷) ∈ ℂ)
7978mulm1d 11663 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (-1 · (𝐴𝐷)) = -(𝐴𝐷))
8045, 56negsubdi2d 11584 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → -(𝐴𝐷) = (𝐷𝐴))
8177, 79, 803eqtrd 2768 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐷𝐵) / (𝐵𝐷)) · (𝐴𝐷)) = (𝐷𝐴))
8256, 44subcld 11568 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷𝐵) ∈ ℂ)
8382, 69, 78, 72div32d 12010 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐷𝐵) / (𝐵𝐷)) · (𝐴𝐷)) = ((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷))))
8481, 83eqtr3d 2766 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷𝐴) = ((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷))))
8584oveq2d 7417 . . . . 5 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐴)) = ((𝐶𝐵)𝐺((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷)))))
8656, 45, 443jca 1125 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
8710, 86, 70, 55sigardiv 46062 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐴𝐷) / (𝐵𝐷)) ∈ ℝ)
8810sigarls 46058 . . . . . 6 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ ∧ ((𝐴𝐷) / (𝐵𝐷)) ∈ ℝ) → ((𝐶𝐵)𝐺((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷)))) = (((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))))
8948, 82, 87, 88syl3anc 1368 . . . . 5 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷)))) = (((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))))
9065, 85, 893eqtrd 2768 . . . 4 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))))
9190oveq1d 7416 . . 3 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = ((((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))) · (𝐵𝐷)))
9210sigarim 46052 . . . . . 6 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ) → ((𝐶𝐵)𝐺(𝐷𝐵)) ∈ ℝ)
9392recnd 11239 . . . . 5 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ) → ((𝐶𝐵)𝐺(𝐷𝐵)) ∈ ℂ)
9448, 82, 93syl2anc 583 . . . 4 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐵)) ∈ ℂ)
9578, 69, 72divcld 11987 . . . 4 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐴𝐷) / (𝐵𝐷)) ∈ ℂ)
9694, 95, 69mulassd 11234 . . 3 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (((𝐴𝐷) / (𝐵𝐷)) · (𝐵𝐷))))
9778, 69, 72divcan1d 11988 . . . 4 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐴𝐷) / (𝐵𝐷)) · (𝐵𝐷)) = (𝐴𝐷))
9897oveq2d 7417 . . 3 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐵)) · (((𝐴𝐷) / (𝐵𝐷)) · (𝐵𝐷))) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
9991, 96, 983eqtrd 2768 . 2 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
10042, 99pm2.61dan 810 1 (𝜑 → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  cfv 6533  (class class class)co 7401  cmpo 7403  cc 11104  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111  cmin 11441  -cneg 11442   / cdiv 11868  ccj 15040  cim 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-2 12272  df-cj 15043  df-re 15044  df-im 15045
This theorem is referenced by:  cevathlem2  46069
  Copyright terms: Public domain W3C validator