Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sharhght Structured version   Visualization version   GIF version

Theorem sharhght 41575
Description: Let 𝐴𝐵𝐶 be a triangle, and let 𝐷 lie on the line 𝐴𝐵. Then (doubled) areas of triangles 𝐴𝐷𝐶 and 𝐶𝐷𝐵 relate as lengths of corresponding bases 𝐴𝐷 and 𝐷𝐵. (Contributed by Saveliy Skresanov, 23-Sep-2017.)
Hypotheses
Ref Expression
sharhght.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sharhght.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sharhght.b (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
Assertion
Ref Expression
sharhght (𝜑 → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sharhght
StepHypRef Expression
1 sharhght.a . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp3d 1138 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
31simp1d 1136 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
42, 3subcld 10595 . . . . . . 7 (𝜑 → (𝐶𝐴) ∈ ℂ)
54adantr 466 . . . . . 6 ((𝜑𝐵 = 𝐷) → (𝐶𝐴) ∈ ℂ)
6 sharhght.b . . . . . . . . 9 (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
76simpld 478 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
87, 3subcld 10595 . . . . . . 7 (𝜑 → (𝐷𝐴) ∈ ℂ)
98adantr 466 . . . . . 6 ((𝜑𝐵 = 𝐷) → (𝐷𝐴) ∈ ℂ)
10 sharhght.sigar . . . . . . 7 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1110sigarim 41561 . . . . . 6 (((𝐶𝐴) ∈ ℂ ∧ (𝐷𝐴) ∈ ℂ) → ((𝐶𝐴)𝐺(𝐷𝐴)) ∈ ℝ)
125, 9, 11syl2anc 567 . . . . 5 ((𝜑𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) ∈ ℝ)
1312recnd 10271 . . . 4 ((𝜑𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) ∈ ℂ)
1413mul01d 10438 . . 3 ((𝜑𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · 0) = 0)
151simp2d 1137 . . . . . 6 (𝜑𝐵 ∈ ℂ)
1615adantr 466 . . . . 5 ((𝜑𝐵 = 𝐷) → 𝐵 ∈ ℂ)
17 simpr 471 . . . . 5 ((𝜑𝐵 = 𝐷) → 𝐵 = 𝐷)
1816, 17subeq0bd 10659 . . . 4 ((𝜑𝐵 = 𝐷) → (𝐵𝐷) = 0)
1918oveq2d 6810 . . 3 ((𝜑𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐴)𝐺(𝐷𝐴)) · 0))
202, 15subcld 10595 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
2120adantr 466 . . . . . . 7 ((𝜑𝐵 = 𝐷) → (𝐶𝐵) ∈ ℂ)
227, 15subcld 10595 . . . . . . . 8 (𝜑 → (𝐷𝐵) ∈ ℂ)
2322adantr 466 . . . . . . 7 ((𝜑𝐵 = 𝐷) → (𝐷𝐵) ∈ ℂ)
2410sigarval 41560 . . . . . . 7 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ) → ((𝐶𝐵)𝐺(𝐷𝐵)) = (ℑ‘((∗‘(𝐶𝐵)) · (𝐷𝐵))))
2521, 23, 24syl2anc 567 . . . . . 6 ((𝜑𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐵)) = (ℑ‘((∗‘(𝐶𝐵)) · (𝐷𝐵))))
267adantr 466 . . . . . . . . . 10 ((𝜑𝐵 = 𝐷) → 𝐷 ∈ ℂ)
2717eqcomd 2777 . . . . . . . . . 10 ((𝜑𝐵 = 𝐷) → 𝐷 = 𝐵)
2826, 27subeq0bd 10659 . . . . . . . . 9 ((𝜑𝐵 = 𝐷) → (𝐷𝐵) = 0)
2928oveq2d 6810 . . . . . . . 8 ((𝜑𝐵 = 𝐷) → ((∗‘(𝐶𝐵)) · (𝐷𝐵)) = ((∗‘(𝐶𝐵)) · 0))
3021cjcld 14145 . . . . . . . . 9 ((𝜑𝐵 = 𝐷) → (∗‘(𝐶𝐵)) ∈ ℂ)
3130mul01d 10438 . . . . . . . 8 ((𝜑𝐵 = 𝐷) → ((∗‘(𝐶𝐵)) · 0) = 0)
3229, 31eqtrd 2805 . . . . . . 7 ((𝜑𝐵 = 𝐷) → ((∗‘(𝐶𝐵)) · (𝐷𝐵)) = 0)
3332fveq2d 6337 . . . . . 6 ((𝜑𝐵 = 𝐷) → (ℑ‘((∗‘(𝐶𝐵)) · (𝐷𝐵))) = (ℑ‘0))
34 0red 10244 . . . . . . 7 ((𝜑𝐵 = 𝐷) → 0 ∈ ℝ)
3534reim0d 14174 . . . . . 6 ((𝜑𝐵 = 𝐷) → (ℑ‘0) = 0)
3625, 33, 353eqtrd 2809 . . . . 5 ((𝜑𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐵)) = 0)
3736oveq1d 6809 . . . 4 ((𝜑𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)) = (0 · (𝐴𝐷)))
383adantr 466 . . . . . 6 ((𝜑𝐵 = 𝐷) → 𝐴 ∈ ℂ)
3938, 26subcld 10595 . . . . 5 ((𝜑𝐵 = 𝐷) → (𝐴𝐷) ∈ ℂ)
4039mul02d 10437 . . . 4 ((𝜑𝐵 = 𝐷) → (0 · (𝐴𝐷)) = 0)
4137, 40eqtrd 2805 . . 3 ((𝜑𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)) = 0)
4214, 19, 413eqtr4d 2815 . 2 ((𝜑𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
432adantr 466 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐶 ∈ ℂ)
4415adantr 466 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐵 ∈ ℂ)
453adantr 466 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐴 ∈ ℂ)
4643, 44, 45npncand 10619 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵) + (𝐵𝐴)) = (𝐶𝐴))
4746oveq1d 6809 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵) + (𝐵𝐴))𝐺(𝐷𝐴)) = ((𝐶𝐴)𝐺(𝐷𝐴)))
4843, 44subcld 10595 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐶𝐵) ∈ ℂ)
498adantr 466 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷𝐴) ∈ ℂ)
5044, 45subcld 10595 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐵𝐴) ∈ ℂ)
5110sigaraf 41563 . . . . . . . 8 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐴) ∈ ℂ ∧ (𝐵𝐴) ∈ ℂ) → (((𝐶𝐵) + (𝐵𝐴))𝐺(𝐷𝐴)) = (((𝐶𝐵)𝐺(𝐷𝐴)) + ((𝐵𝐴)𝐺(𝐷𝐴))))
5248, 49, 50, 51syl3anc 1476 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵) + (𝐵𝐴))𝐺(𝐷𝐴)) = (((𝐶𝐵)𝐺(𝐷𝐴)) + ((𝐵𝐴)𝐺(𝐷𝐴))))
5347, 52eqtr3d 2807 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) = (((𝐶𝐵)𝐺(𝐷𝐴)) + ((𝐵𝐴)𝐺(𝐷𝐴))))
546simprd 479 . . . . . . . . 9 (𝜑 → ((𝐴𝐷)𝐺(𝐵𝐷)) = 0)
5554adantr 466 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐴𝐷)𝐺(𝐵𝐷)) = 0)
567adantr 466 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐷 ∈ ℂ)
5710sigarperm 41570 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐴𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐴)𝐺(𝐷𝐴)))
5845, 44, 56, 57syl3anc 1476 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐴𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐴)𝐺(𝐷𝐴)))
5955, 58eqtr3d 2807 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 0 = ((𝐵𝐴)𝐺(𝐷𝐴)))
6059oveq2d 6810 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐴)) + 0) = (((𝐶𝐵)𝐺(𝐷𝐴)) + ((𝐵𝐴)𝐺(𝐷𝐴))))
6110sigarim 41561 . . . . . . . . 9 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐴) ∈ ℂ) → ((𝐶𝐵)𝐺(𝐷𝐴)) ∈ ℝ)
6248, 49, 61syl2anc 567 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐴)) ∈ ℝ)
6362recnd 10271 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐴)) ∈ ℂ)
6463addid1d 10439 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐴)) + 0) = ((𝐶𝐵)𝐺(𝐷𝐴)))
6553, 60, 643eqtr2d 2811 . . . . 5 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) = ((𝐶𝐵)𝐺(𝐷𝐴)))
6644, 56negsubdi2d 10611 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → -(𝐵𝐷) = (𝐷𝐵))
6766eqcomd 2777 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷𝐵) = -(𝐵𝐷))
6867oveq1d 6809 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐷𝐵) / (𝐵𝐷)) = (-(𝐵𝐷) / (𝐵𝐷)))
6944, 56subcld 10595 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐵𝐷) ∈ ℂ)
70 simpr 471 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ¬ 𝐵 = 𝐷)
7170neqned 2950 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → 𝐵𝐷)
7244, 56, 71subne0d 10604 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐵𝐷) ≠ 0)
7369, 69, 72divnegd 11017 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → -((𝐵𝐷) / (𝐵𝐷)) = (-(𝐵𝐷) / (𝐵𝐷)))
7469, 72dividd 11002 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐵𝐷) / (𝐵𝐷)) = 1)
7574negeqd 10478 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → -((𝐵𝐷) / (𝐵𝐷)) = -1)
7668, 73, 753eqtr2d 2811 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐷𝐵) / (𝐵𝐷)) = -1)
7776oveq1d 6809 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐷𝐵) / (𝐵𝐷)) · (𝐴𝐷)) = (-1 · (𝐴𝐷)))
7845, 56subcld 10595 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐴𝐷) ∈ ℂ)
7978mulm1d 10685 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (-1 · (𝐴𝐷)) = -(𝐴𝐷))
8045, 56negsubdi2d 10611 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → -(𝐴𝐷) = (𝐷𝐴))
8177, 79, 803eqtrd 2809 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐷𝐵) / (𝐵𝐷)) · (𝐴𝐷)) = (𝐷𝐴))
8256, 44subcld 10595 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷𝐵) ∈ ℂ)
8382, 69, 78, 72div32d 11027 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐷𝐵) / (𝐵𝐷)) · (𝐴𝐷)) = ((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷))))
8481, 83eqtr3d 2807 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷𝐴) = ((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷))))
8584oveq2d 6810 . . . . 5 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐴)) = ((𝐶𝐵)𝐺((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷)))))
8656, 45, 443jca 1122 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (𝐷 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
8710, 86, 70, 55sigardiv 41571 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐴𝐷) / (𝐵𝐷)) ∈ ℝ)
8810sigarls 41567 . . . . . 6 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ ∧ ((𝐴𝐷) / (𝐵𝐷)) ∈ ℝ) → ((𝐶𝐵)𝐺((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷)))) = (((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))))
8948, 82, 87, 88syl3anc 1476 . . . . 5 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺((𝐷𝐵) · ((𝐴𝐷) / (𝐵𝐷)))) = (((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))))
9065, 85, 893eqtrd 2809 . . . 4 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐴)𝐺(𝐷𝐴)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))))
9190oveq1d 6809 . . 3 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = ((((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))) · (𝐵𝐷)))
9210sigarim 41561 . . . . . 6 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ) → ((𝐶𝐵)𝐺(𝐷𝐵)) ∈ ℝ)
9392recnd 10271 . . . . 5 (((𝐶𝐵) ∈ ℂ ∧ (𝐷𝐵) ∈ ℂ) → ((𝐶𝐵)𝐺(𝐷𝐵)) ∈ ℂ)
9448, 82, 93syl2anc 567 . . . 4 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐶𝐵)𝐺(𝐷𝐵)) ∈ ℂ)
9578, 69, 72divcld 11004 . . . 4 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((𝐴𝐷) / (𝐵𝐷)) ∈ ℂ)
9694, 95, 69mulassd 10266 . . 3 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → ((((𝐶𝐵)𝐺(𝐷𝐵)) · ((𝐴𝐷) / (𝐵𝐷))) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (((𝐴𝐷) / (𝐵𝐷)) · (𝐵𝐷))))
9778, 69, 72divcan1d 11005 . . . 4 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐴𝐷) / (𝐵𝐷)) · (𝐵𝐷)) = (𝐴𝐷))
9897oveq2d 6810 . . 3 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐵)𝐺(𝐷𝐵)) · (((𝐴𝐷) / (𝐵𝐷)) · (𝐵𝐷))) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
9991, 96, 983eqtrd 2809 . 2 ((𝜑 ∧ ¬ 𝐵 = 𝐷) → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
10042, 99pm2.61dan 807 1 (𝜑 → (((𝐶𝐴)𝐺(𝐷𝐴)) · (𝐵𝐷)) = (((𝐶𝐵)𝐺(𝐷𝐵)) · (𝐴𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  cfv 6032  (class class class)co 6794  cmpt2 6796  cc 10137  cr 10138  0cc0 10139  1c1 10140   + caddc 10142   · cmul 10144  cmin 10469  -cneg 10470   / cdiv 10887  ccj 14045  cim 14047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-div 10888  df-2 11282  df-cj 14048  df-re 14049  df-im 14050
This theorem is referenced by:  cevathlem2  41578
  Copyright terms: Public domain W3C validator