Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfinfdmmbl Structured version   Visualization version   GIF version

Theorem smfinfdmmbl 46971
Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025.)
Hypotheses
Ref Expression
smfinfdmmbl.1 𝑛𝜑
smfinfdmmbl.2 𝑥𝜑
smfinfdmmbl.3 𝑥𝐹
smfinfdmmbl.4 (𝜑𝑀 ∈ ℤ)
smfinfdmmbl.5 𝑍 = (ℤ𝑀)
smfinfdmmbl.6 (𝜑𝑆 ∈ SAlg)
smfinfdmmbl.7 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfinfdmmbl.8 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
smfinfdmmbl.9 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
smfinfdmmbl.10 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfinfdmmbl (𝜑 → dom 𝐺𝑆)
Distinct variable groups:   𝑦,𝐹   𝑆,𝑛   𝑥,𝑍,𝑛,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfinfdmmbl
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 smfinfdmmbl.1 . 2 𝑛𝜑
2 smfinfdmmbl.2 . 2 𝑥𝜑
3 nfv 1915 . 2 𝑚𝜑
4 smfinfdmmbl.3 . 2 𝑥𝐹
5 smfinfdmmbl.4 . 2 (𝜑𝑀 ∈ ℤ)
6 smfinfdmmbl.5 . 2 𝑍 = (ℤ𝑀)
7 smfinfdmmbl.6 . 2 (𝜑𝑆 ∈ SAlg)
8 smfinfdmmbl.7 . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
9 smfinfdmmbl.8 . 2 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ 𝑆)
10 smfinfdmmbl.9 . 2 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
11 smfinfdmmbl.10 . 2 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
12 eqid 2733 . 2 (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)})) = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12smfinfdmmbllem 46970 1 (𝜑 → dom 𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2113  wnfc 2880  wral 3048  wrex 3057  {crab 3396   ciin 4942   class class class wbr 5093  cmpt 5174  dom cdm 5619  ran crn 5620  wf 6482  cfv 6486  infcinf 9332  cr 11012   < clt 11153  cle 11154  -cneg 11352  cn 12132  cz 12475  cuz 12738  SAlgcsalg 46430  SMblFncsmblfn 46817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cc 10333  ax-ac2 10361  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-acn 9842  df-ac 10014  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-ioo 13251  df-ico 13253  df-fl 13698  df-rest 17328  df-salg 46431  df-smblfn 46818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator