| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfinfdmmbl | Structured version Visualization version GIF version | ||
| Description: If a countable set of sigma-measurable functions have domains in the sigma-algebra, then their infimum function has the domain in the sigma-algebra. This is the fifth statement of Proposition 121H of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 1-Feb-2025.) |
| Ref | Expression |
|---|---|
| smfinfdmmbl.1 | ⊢ Ⅎ𝑛𝜑 |
| smfinfdmmbl.2 | ⊢ Ⅎ𝑥𝜑 |
| smfinfdmmbl.3 | ⊢ Ⅎ𝑥𝐹 |
| smfinfdmmbl.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| smfinfdmmbl.5 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| smfinfdmmbl.6 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfinfdmmbl.7 | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
| smfinfdmmbl.8 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) |
| smfinfdmmbl.9 | ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} |
| smfinfdmmbl.10 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
| Ref | Expression |
|---|---|
| smfinfdmmbl | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfinfdmmbl.1 | . 2 ⊢ Ⅎ𝑛𝜑 | |
| 2 | smfinfdmmbl.2 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 3 | nfv 1914 | . 2 ⊢ Ⅎ𝑚𝜑 | |
| 4 | smfinfdmmbl.3 | . 2 ⊢ Ⅎ𝑥𝐹 | |
| 5 | smfinfdmmbl.4 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 6 | smfinfdmmbl.5 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 7 | smfinfdmmbl.6 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 8 | smfinfdmmbl.7 | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
| 9 | smfinfdmmbl.8 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝐹‘𝑛) ∈ 𝑆) | |
| 10 | smfinfdmmbl.9 | . 2 ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} | |
| 11 | smfinfdmmbl.10 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | |
| 12 | eqid 2730 | . 2 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)})) = (𝑛 ∈ 𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹‘𝑛) ∣ -𝑚 < ((𝐹‘𝑛)‘𝑥)})) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | smfinfdmmbllem 46819 | 1 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2878 ∀wral 3046 ∃wrex 3055 {crab 3411 ∩ ciin 4964 class class class wbr 5115 ↦ cmpt 5196 dom cdm 5646 ran crn 5647 ⟶wf 6515 ‘cfv 6519 infcinf 9410 ℝcr 11085 < clt 11226 ≤ cle 11227 -cneg 11424 ℕcn 12197 ℤcz 12545 ℤ≥cuz 12809 SAlgcsalg 46279 SMblFncsmblfn 46666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cc 10406 ax-ac2 10434 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-oadd 8447 df-omul 8448 df-er 8682 df-map 8805 df-pm 8806 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-sup 9411 df-inf 9412 df-oi 9481 df-card 9910 df-acn 9913 df-ac 10087 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-n0 12459 df-z 12546 df-uz 12810 df-q 12922 df-rp 12966 df-ioo 13323 df-ico 13325 df-fl 13766 df-rest 17391 df-salg 46280 df-smblfn 46667 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |