Mathbox for Saveliy Skresanov < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarmf Structured version   Visualization version   GIF version

Theorem sigarmf 43455
 Description: Signed area is additive (with respect to subtraction) by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.)
Hypothesis
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
Assertion
Ref Expression
sigarmf ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) − (𝐶𝐺𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem sigarmf
StepHypRef Expression
1 cjsub 14503 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘(𝐴𝐶)) = ((∗‘𝐴) − (∗‘𝐶)))
21oveq1d 7154 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴𝐶)) · 𝐵) = (((∗‘𝐴) − (∗‘𝐶)) · 𝐵))
323adant2 1128 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴𝐶)) · 𝐵) = (((∗‘𝐴) − (∗‘𝐶)) · 𝐵))
4 simp1 1133 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
54cjcld 14550 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘𝐴) ∈ ℂ)
6 simp3 1135 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
76cjcld 14550 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘𝐶) ∈ ℂ)
8 simp2 1134 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
95, 7, 8subdird 11090 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((∗‘𝐴) − (∗‘𝐶)) · 𝐵) = (((∗‘𝐴) · 𝐵) − ((∗‘𝐶) · 𝐵)))
103, 9eqtrd 2836 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴𝐶)) · 𝐵) = (((∗‘𝐴) · 𝐵) − ((∗‘𝐶) · 𝐵)))
1110fveq2d 6653 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘((∗‘(𝐴𝐶)) · 𝐵)) = (ℑ‘(((∗‘𝐴) · 𝐵) − ((∗‘𝐶) · 𝐵))))
125, 8mulcld 10654 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘𝐴) · 𝐵) ∈ ℂ)
137, 8mulcld 10654 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘𝐶) · 𝐵) ∈ ℂ)
1412, 13imsubd 14571 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘(((∗‘𝐴) · 𝐵) − ((∗‘𝐶) · 𝐵))) = ((ℑ‘((∗‘𝐴) · 𝐵)) − (ℑ‘((∗‘𝐶) · 𝐵))))
1511, 14eqtrd 2836 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘((∗‘(𝐴𝐶)) · 𝐵)) = ((ℑ‘((∗‘𝐴) · 𝐵)) − (ℑ‘((∗‘𝐶) · 𝐵))))
164, 6subcld 10990 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
17 sigar . . . 4 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1817sigarval 43451 . . 3 (((𝐴𝐶) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐶)𝐺𝐵) = (ℑ‘((∗‘(𝐴𝐶)) · 𝐵)))
1916, 8, 18syl2anc 587 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶)𝐺𝐵) = (ℑ‘((∗‘(𝐴𝐶)) · 𝐵)))
2017sigarval 43451 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵)))
21203adant3 1129 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵)))
22 3simpc 1147 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
2322ancomd 465 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ))
2417sigarval 43451 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐺𝐵) = (ℑ‘((∗‘𝐶) · 𝐵)))
2523, 24syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐵) = (ℑ‘((∗‘𝐶) · 𝐵)))
2621, 25oveq12d 7157 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐺𝐵) − (𝐶𝐺𝐵)) = ((ℑ‘((∗‘𝐴) · 𝐵)) − (ℑ‘((∗‘𝐶) · 𝐵))))
2715, 19, 263eqtr4d 2846 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) − (𝐶𝐺𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ‘cfv 6328  (class class class)co 7139   ∈ cmpo 7141  ℂcc 10528   · cmul 10535   − cmin 10863  ∗ccj 14450  ℑcim 14452 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-2 11692  df-cj 14453  df-re 14454  df-im 14455 This theorem is referenced by:  sigarms  43457  sigarexp  43460  sigaradd  43467
 Copyright terms: Public domain W3C validator