![]() |
Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigarmf | Structured version Visualization version GIF version |
Description: Signed area is additive (with respect to subtraction) by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
Ref | Expression |
---|---|
sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
Ref | Expression |
---|---|
sigarmf | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) − (𝐶𝐺𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjsub 15034 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘(𝐴 − 𝐶)) = ((∗‘𝐴) − (∗‘𝐶))) | |
2 | 1 | oveq1d 7372 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴 − 𝐶)) · 𝐵) = (((∗‘𝐴) − (∗‘𝐶)) · 𝐵)) |
3 | 2 | 3adant2 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴 − 𝐶)) · 𝐵) = (((∗‘𝐴) − (∗‘𝐶)) · 𝐵)) |
4 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ) | |
5 | 4 | cjcld 15081 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘𝐴) ∈ ℂ) |
6 | simp3 1138 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
7 | 6 | cjcld 15081 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∗‘𝐶) ∈ ℂ) |
8 | simp2 1137 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ) | |
9 | 5, 7, 8 | subdird 11612 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((∗‘𝐴) − (∗‘𝐶)) · 𝐵) = (((∗‘𝐴) · 𝐵) − ((∗‘𝐶) · 𝐵))) |
10 | 3, 9 | eqtrd 2776 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘(𝐴 − 𝐶)) · 𝐵) = (((∗‘𝐴) · 𝐵) − ((∗‘𝐶) · 𝐵))) |
11 | 10 | fveq2d 6846 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘((∗‘(𝐴 − 𝐶)) · 𝐵)) = (ℑ‘(((∗‘𝐴) · 𝐵) − ((∗‘𝐶) · 𝐵)))) |
12 | 5, 8 | mulcld 11175 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘𝐴) · 𝐵) ∈ ℂ) |
13 | 7, 8 | mulcld 11175 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((∗‘𝐶) · 𝐵) ∈ ℂ) |
14 | 12, 13 | imsubd 15102 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘(((∗‘𝐴) · 𝐵) − ((∗‘𝐶) · 𝐵))) = ((ℑ‘((∗‘𝐴) · 𝐵)) − (ℑ‘((∗‘𝐶) · 𝐵)))) |
15 | 11, 14 | eqtrd 2776 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (ℑ‘((∗‘(𝐴 − 𝐶)) · 𝐵)) = ((ℑ‘((∗‘𝐴) · 𝐵)) − (ℑ‘((∗‘𝐶) · 𝐵)))) |
16 | 4, 6 | subcld 11512 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − 𝐶) ∈ ℂ) |
17 | sigar | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
18 | 17 | sigarval 45081 | . . 3 ⊢ (((𝐴 − 𝐶) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐶)𝐺𝐵) = (ℑ‘((∗‘(𝐴 − 𝐶)) · 𝐵))) |
19 | 16, 8, 18 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺𝐵) = (ℑ‘((∗‘(𝐴 − 𝐶)) · 𝐵))) |
20 | 17 | sigarval 45081 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
21 | 20 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) |
22 | 3simpc 1150 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) | |
23 | 22 | ancomd 462 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
24 | 17 | sigarval 45081 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐺𝐵) = (ℑ‘((∗‘𝐶) · 𝐵))) |
25 | 23, 24 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐵) = (ℑ‘((∗‘𝐶) · 𝐵))) |
26 | 21, 25 | oveq12d 7375 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐺𝐵) − (𝐶𝐺𝐵)) = ((ℑ‘((∗‘𝐴) · 𝐵)) − (ℑ‘((∗‘𝐶) · 𝐵)))) |
27 | 15, 19, 26 | 3eqtr4d 2786 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) − (𝐶𝐺𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 ℂcc 11049 · cmul 11056 − cmin 11385 ∗ccj 14981 ℑcim 14983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-po 5545 df-so 5546 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-2 12216 df-cj 14984 df-re 14985 df-im 14986 |
This theorem is referenced by: sigarms 45087 sigarexp 45090 sigaradd 45097 |
Copyright terms: Public domain | W3C validator |