MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpog Structured version   Visualization version   GIF version

Theorem ovmpog 7609
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovmpog.1 (𝑥 = 𝐴𝑅 = 𝐺)
ovmpog.2 (𝑦 = 𝐵𝐺 = 𝑆)
ovmpog.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpog ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ovmpog
StepHypRef Expression
1 ovmpog.1 . . 3 (𝑥 = 𝐴𝑅 = 𝐺)
2 ovmpog.2 . . 3 (𝑦 = 𝐵𝐺 = 𝑆)
31, 2sylan9eq 2800 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
4 ovmpog.3 . 2 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
53, 4ovmpoga 7604 1 ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  (class class class)co 7448  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  ovmpo  7610  naddcllem  8732  mapvalg  8894  pmvalg  8895  genpv  11068  shftfval  15119  efmndov  18916  frlmipval  21822  bcthlem1  25377  negsval  28075  motplusg  28568  signspval  34529  elghomlem1OLD  37845  paddval  39755  tgrpov  40705  erngmul  40763  erngmul-rN  40771  dvamulr  40969  dvavadd  40972  dvhmulr  41043  djavalN  41092  djhval  41355  mendmulr  43145
  Copyright terms: Public domain W3C validator