| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp12r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp12r | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ackbij1lem16 10187 lsmcv 21051 nllyrest 23373 axcontlem4 28894 eqlkr 39092 athgt 39450 llncvrlpln2 39551 4atlem11b 39602 2lnat 39778 cdlemblem 39787 pclfinN 39894 lhp2at0nle 40029 4atexlemex6 40068 cdlemd2 40193 cdlemd8 40199 cdleme15a 40268 cdleme16b 40273 cdleme16c 40274 cdleme16d 40275 cdleme20h 40310 cdleme21c 40321 cdleme21ct 40323 cdleme22cN 40336 cdleme23b 40344 cdleme26fALTN 40356 cdleme26f 40357 cdleme26f2ALTN 40358 cdleme26f2 40359 cdleme32le 40441 cdleme35f 40448 cdlemf1 40555 trlord 40563 cdlemg7aN 40619 cdlemg33c0 40696 trlcone 40722 cdlemg44 40727 cdlemg48 40731 cdlemky 40920 cdlemk11ta 40923 cdleml4N 40973 dihmeetlem3N 41299 dihmeetlem13N 41313 mapdpglem32 41699 baerlem3lem2 41704 baerlem5alem2 41705 baerlem5blem2 41706 mzpcong 42961 iscnrm3rlem8 48935 |
| Copyright terms: Public domain | W3C validator |