| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp12r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp12r | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ackbij1lem16 10147 lsmcv 21066 nllyrest 23389 axcontlem4 28930 eqlkr 39077 athgt 39435 llncvrlpln2 39536 4atlem11b 39587 2lnat 39763 cdlemblem 39772 pclfinN 39879 lhp2at0nle 40014 4atexlemex6 40053 cdlemd2 40178 cdlemd8 40184 cdleme15a 40253 cdleme16b 40258 cdleme16c 40259 cdleme16d 40260 cdleme20h 40295 cdleme21c 40306 cdleme21ct 40308 cdleme22cN 40321 cdleme23b 40329 cdleme26fALTN 40341 cdleme26f 40342 cdleme26f2ALTN 40343 cdleme26f2 40344 cdleme32le 40426 cdleme35f 40433 cdlemf1 40540 trlord 40548 cdlemg7aN 40604 cdlemg33c0 40681 trlcone 40707 cdlemg44 40712 cdlemg48 40716 cdlemky 40905 cdlemk11ta 40908 cdleml4N 40958 dihmeetlem3N 41284 dihmeetlem13N 41298 mapdpglem32 41684 baerlem3lem2 41689 baerlem5alem2 41690 baerlem5blem2 41691 mzpcong 42945 iscnrm3rlem8 48932 |
| Copyright terms: Public domain | W3C validator |