| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp12r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp12r | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ackbij1lem16 10125 lsmcv 21079 nllyrest 23402 axcontlem4 28946 eqlkr 39144 athgt 39501 llncvrlpln2 39602 4atlem11b 39653 2lnat 39829 cdlemblem 39838 pclfinN 39945 lhp2at0nle 40080 4atexlemex6 40119 cdlemd2 40244 cdlemd8 40250 cdleme15a 40319 cdleme16b 40324 cdleme16c 40325 cdleme16d 40326 cdleme20h 40361 cdleme21c 40372 cdleme21ct 40374 cdleme22cN 40387 cdleme23b 40395 cdleme26fALTN 40407 cdleme26f 40408 cdleme26f2ALTN 40409 cdleme26f2 40410 cdleme32le 40492 cdleme35f 40499 cdlemf1 40606 trlord 40614 cdlemg7aN 40670 cdlemg33c0 40747 trlcone 40773 cdlemg44 40778 cdlemg48 40782 cdlemky 40971 cdlemk11ta 40974 cdleml4N 41024 dihmeetlem3N 41350 dihmeetlem13N 41364 mapdpglem32 41750 baerlem3lem2 41755 baerlem5alem2 41756 baerlem5blem2 41757 mzpcong 43011 iscnrm3rlem8 48984 |
| Copyright terms: Public domain | W3C validator |