| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp12r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp12r | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ackbij1lem16 10248 lsmcv 21102 nllyrest 23424 axcontlem4 28946 eqlkr 39117 athgt 39475 llncvrlpln2 39576 4atlem11b 39627 2lnat 39803 cdlemblem 39812 pclfinN 39919 lhp2at0nle 40054 4atexlemex6 40093 cdlemd2 40218 cdlemd8 40224 cdleme15a 40293 cdleme16b 40298 cdleme16c 40299 cdleme16d 40300 cdleme20h 40335 cdleme21c 40346 cdleme21ct 40348 cdleme22cN 40361 cdleme23b 40369 cdleme26fALTN 40381 cdleme26f 40382 cdleme26f2ALTN 40383 cdleme26f2 40384 cdleme32le 40466 cdleme35f 40473 cdlemf1 40580 trlord 40588 cdlemg7aN 40644 cdlemg33c0 40721 trlcone 40747 cdlemg44 40752 cdlemg48 40756 cdlemky 40945 cdlemk11ta 40948 cdleml4N 40998 dihmeetlem3N 41324 dihmeetlem13N 41338 mapdpglem32 41724 baerlem3lem2 41729 baerlem5alem2 41730 baerlem5blem2 41731 mzpcong 42996 iscnrm3rlem8 48921 |
| Copyright terms: Public domain | W3C validator |