Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp12r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp12r | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1199 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: ackbij1lem16 9991 lsmcv 20403 nllyrest 22637 axcontlem4 27335 eqlkr 37113 athgt 37470 llncvrlpln2 37571 4atlem11b 37622 2lnat 37798 cdlemblem 37807 pclfinN 37914 lhp2at0nle 38049 4atexlemex6 38088 cdlemd2 38213 cdlemd8 38219 cdleme15a 38288 cdleme16b 38293 cdleme16c 38294 cdleme16d 38295 cdleme20h 38330 cdleme21c 38341 cdleme21ct 38343 cdleme22cN 38356 cdleme23b 38364 cdleme26fALTN 38376 cdleme26f 38377 cdleme26f2ALTN 38378 cdleme26f2 38379 cdleme32le 38461 cdleme35f 38468 cdlemf1 38575 trlord 38583 cdlemg7aN 38639 cdlemg33c0 38716 trlcone 38742 cdlemg44 38747 cdlemg48 38751 cdlemky 38940 cdlemk11ta 38943 cdleml4N 38993 dihmeetlem3N 39319 dihmeetlem13N 39333 mapdpglem32 39719 baerlem3lem2 39724 baerlem5alem2 39725 baerlem5blem2 39726 mzpcong 40794 iscnrm3rlem8 46241 |
Copyright terms: Public domain | W3C validator |