| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp12r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp12r | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ackbij1lem16 10194 lsmcv 21058 nllyrest 23380 axcontlem4 28901 eqlkr 39099 athgt 39457 llncvrlpln2 39558 4atlem11b 39609 2lnat 39785 cdlemblem 39794 pclfinN 39901 lhp2at0nle 40036 4atexlemex6 40075 cdlemd2 40200 cdlemd8 40206 cdleme15a 40275 cdleme16b 40280 cdleme16c 40281 cdleme16d 40282 cdleme20h 40317 cdleme21c 40328 cdleme21ct 40330 cdleme22cN 40343 cdleme23b 40351 cdleme26fALTN 40363 cdleme26f 40364 cdleme26f2ALTN 40365 cdleme26f2 40366 cdleme32le 40448 cdleme35f 40455 cdlemf1 40562 trlord 40570 cdlemg7aN 40626 cdlemg33c0 40703 trlcone 40729 cdlemg44 40734 cdlemg48 40738 cdlemky 40927 cdlemk11ta 40930 cdleml4N 40980 dihmeetlem3N 41306 dihmeetlem13N 41320 mapdpglem32 41706 baerlem3lem2 41711 baerlem5alem2 41712 baerlem5blem2 41713 mzpcong 42968 iscnrm3rlem8 48939 |
| Copyright terms: Public domain | W3C validator |