![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp12r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp12r | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1199 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant1 1132 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: ackbij1lem16 10272 lsmcv 21161 nllyrest 23510 axcontlem4 28997 eqlkr 39081 athgt 39439 llncvrlpln2 39540 4atlem11b 39591 2lnat 39767 cdlemblem 39776 pclfinN 39883 lhp2at0nle 40018 4atexlemex6 40057 cdlemd2 40182 cdlemd8 40188 cdleme15a 40257 cdleme16b 40262 cdleme16c 40263 cdleme16d 40264 cdleme20h 40299 cdleme21c 40310 cdleme21ct 40312 cdleme22cN 40325 cdleme23b 40333 cdleme26fALTN 40345 cdleme26f 40346 cdleme26f2ALTN 40347 cdleme26f2 40348 cdleme32le 40430 cdleme35f 40437 cdlemf1 40544 trlord 40552 cdlemg7aN 40608 cdlemg33c0 40685 trlcone 40711 cdlemg44 40716 cdlemg48 40720 cdlemky 40909 cdlemk11ta 40912 cdleml4N 40962 dihmeetlem3N 41288 dihmeetlem13N 41302 mapdpglem32 41688 baerlem3lem2 41693 baerlem5alem2 41694 baerlem5blem2 41695 mzpcong 42961 iscnrm3rlem8 48744 |
Copyright terms: Public domain | W3C validator |