Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp12r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp12r | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1198 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ackbij1lem16 9975 lsmcv 20384 nllyrest 22618 axcontlem4 27316 eqlkr 37092 athgt 37449 llncvrlpln2 37550 4atlem11b 37601 2lnat 37777 cdlemblem 37786 pclfinN 37893 lhp2at0nle 38028 4atexlemex6 38067 cdlemd2 38192 cdlemd8 38198 cdleme15a 38267 cdleme16b 38272 cdleme16c 38273 cdleme16d 38274 cdleme20h 38309 cdleme21c 38320 cdleme21ct 38322 cdleme22cN 38335 cdleme23b 38343 cdleme26fALTN 38355 cdleme26f 38356 cdleme26f2ALTN 38357 cdleme26f2 38358 cdleme32le 38440 cdleme35f 38447 cdlemf1 38554 trlord 38562 cdlemg7aN 38618 cdlemg33c0 38695 trlcone 38721 cdlemg44 38726 cdlemg48 38730 cdlemky 38919 cdlemk11ta 38922 cdleml4N 38972 dihmeetlem3N 39298 dihmeetlem13N 39312 mapdpglem32 39698 baerlem3lem2 39703 baerlem5alem2 39704 baerlem5blem2 39705 mzpcong 40774 iscnrm3rlem8 46193 |
Copyright terms: Public domain | W3C validator |