| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp12r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp12r | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1200 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ackbij1lem16 10256 lsmcv 21112 nllyrest 23441 axcontlem4 28913 eqlkr 39075 athgt 39433 llncvrlpln2 39534 4atlem11b 39585 2lnat 39761 cdlemblem 39770 pclfinN 39877 lhp2at0nle 40012 4atexlemex6 40051 cdlemd2 40176 cdlemd8 40182 cdleme15a 40251 cdleme16b 40256 cdleme16c 40257 cdleme16d 40258 cdleme20h 40293 cdleme21c 40304 cdleme21ct 40306 cdleme22cN 40319 cdleme23b 40327 cdleme26fALTN 40339 cdleme26f 40340 cdleme26f2ALTN 40341 cdleme26f2 40342 cdleme32le 40424 cdleme35f 40431 cdlemf1 40538 trlord 40546 cdlemg7aN 40602 cdlemg33c0 40679 trlcone 40705 cdlemg44 40710 cdlemg48 40714 cdlemky 40903 cdlemk11ta 40906 cdleml4N 40956 dihmeetlem3N 41282 dihmeetlem13N 41296 mapdpglem32 41682 baerlem3lem2 41687 baerlem5alem2 41688 baerlem5blem2 41689 mzpcong 42962 iscnrm3rlem8 48828 |
| Copyright terms: Public domain | W3C validator |