Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp12r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp12r | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1198 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant1 1131 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ackbij1lem16 9922 lsmcv 20318 nllyrest 22545 axcontlem4 27238 eqlkr 37040 athgt 37397 llncvrlpln2 37498 4atlem11b 37549 2lnat 37725 cdlemblem 37734 pclfinN 37841 lhp2at0nle 37976 4atexlemex6 38015 cdlemd2 38140 cdlemd8 38146 cdleme15a 38215 cdleme16b 38220 cdleme16c 38221 cdleme16d 38222 cdleme20h 38257 cdleme21c 38268 cdleme21ct 38270 cdleme22cN 38283 cdleme23b 38291 cdleme26fALTN 38303 cdleme26f 38304 cdleme26f2ALTN 38305 cdleme26f2 38306 cdleme32le 38388 cdleme35f 38395 cdlemf1 38502 trlord 38510 cdlemg7aN 38566 cdlemg33c0 38643 trlcone 38669 cdlemg44 38674 cdlemg48 38678 cdlemky 38867 cdlemk11ta 38870 cdleml4N 38920 dihmeetlem3N 39246 dihmeetlem13N 39260 mapdpglem32 39646 baerlem3lem2 39651 baerlem5alem2 39652 baerlem5blem2 39653 mzpcong 40710 iscnrm3rlem8 46129 |
Copyright terms: Public domain | W3C validator |