| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp12r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp12r | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2r 1201 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: ackbij1lem16 10132 lsmcv 21080 nllyrest 23402 axcontlem4 28947 eqlkr 39219 athgt 39576 llncvrlpln2 39677 4atlem11b 39728 2lnat 39904 cdlemblem 39913 pclfinN 40020 lhp2at0nle 40155 4atexlemex6 40194 cdlemd2 40319 cdlemd8 40325 cdleme15a 40394 cdleme16b 40399 cdleme16c 40400 cdleme16d 40401 cdleme20h 40436 cdleme21c 40447 cdleme21ct 40449 cdleme22cN 40462 cdleme23b 40470 cdleme26fALTN 40482 cdleme26f 40483 cdleme26f2ALTN 40484 cdleme26f2 40485 cdleme32le 40567 cdleme35f 40574 cdlemf1 40681 trlord 40689 cdlemg7aN 40745 cdlemg33c0 40822 trlcone 40848 cdlemg44 40853 cdlemg48 40857 cdlemky 41046 cdlemk11ta 41049 cdleml4N 41099 dihmeetlem3N 41425 dihmeetlem13N 41439 mapdpglem32 41825 baerlem3lem2 41830 baerlem5alem2 41831 baerlem5blem2 41832 mzpcong 43090 iscnrm3rlem8 49072 |
| Copyright terms: Public domain | W3C validator |