![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp12r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp12r | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1200 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant1 1133 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: ackbij1lem16 10303 lsmcv 21166 nllyrest 23515 axcontlem4 29000 eqlkr 39055 athgt 39413 llncvrlpln2 39514 4atlem11b 39565 2lnat 39741 cdlemblem 39750 pclfinN 39857 lhp2at0nle 39992 4atexlemex6 40031 cdlemd2 40156 cdlemd8 40162 cdleme15a 40231 cdleme16b 40236 cdleme16c 40237 cdleme16d 40238 cdleme20h 40273 cdleme21c 40284 cdleme21ct 40286 cdleme22cN 40299 cdleme23b 40307 cdleme26fALTN 40319 cdleme26f 40320 cdleme26f2ALTN 40321 cdleme26f2 40322 cdleme32le 40404 cdleme35f 40411 cdlemf1 40518 trlord 40526 cdlemg7aN 40582 cdlemg33c0 40659 trlcone 40685 cdlemg44 40690 cdlemg48 40694 cdlemky 40883 cdlemk11ta 40886 cdleml4N 40936 dihmeetlem3N 41262 dihmeetlem13N 41276 mapdpglem32 41662 baerlem3lem2 41667 baerlem5alem2 41668 baerlem5blem2 41669 mzpcong 42929 iscnrm3rlem8 48627 |
Copyright terms: Public domain | W3C validator |