Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → 𝑊 ∈ LVec) |
2 | | lveclmod 20283 |
. . . . . 6
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
3 | | eqlkr.d |
. . . . . . 7
⊢ 𝐷 = (Scalar‘𝑊) |
4 | 3 | lmodring 20046 |
. . . . . 6
⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) |
5 | 2, 4 | syl 17 |
. . . . 5
⊢ (𝑊 ∈ LVec → 𝐷 ∈ Ring) |
6 | 1, 5 | syl 17 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → 𝐷 ∈ Ring) |
7 | | eqlkr.k |
. . . . 5
⊢ 𝐾 = (Base‘𝐷) |
8 | | eqid 2738 |
. . . . 5
⊢
(1r‘𝐷) = (1r‘𝐷) |
9 | 7, 8 | ringidcl 19722 |
. . . 4
⊢ (𝐷 ∈ Ring →
(1r‘𝐷)
∈ 𝐾) |
10 | 6, 9 | syl 17 |
. . 3
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) →
(1r‘𝐷)
∈ 𝐾) |
11 | | simp11 1201 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ LVec) |
12 | 11, 5 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝐷 ∈ Ring) |
13 | | simp12l 1284 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝐺 ∈ 𝐹) |
14 | | simp3 1136 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) |
15 | | eqlkr.v |
. . . . . . . . 9
⊢ 𝑉 = (Base‘𝑊) |
16 | | eqlkr.f |
. . . . . . . . 9
⊢ 𝐹 = (LFnl‘𝑊) |
17 | 3, 7, 15, 16 | lflcl 37005 |
. . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝐾) |
18 | 11, 13, 14, 17 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝐾) |
19 | | eqlkr.t |
. . . . . . . 8
⊢ · =
(.r‘𝐷) |
20 | 7, 19, 8 | ringridm 19726 |
. . . . . . 7
⊢ ((𝐷 ∈ Ring ∧ (𝐺‘𝑥) ∈ 𝐾) → ((𝐺‘𝑥) ·
(1r‘𝐷)) =
(𝐺‘𝑥)) |
21 | 12, 18, 20 | syl2anc 583 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥) ·
(1r‘𝐷)) =
(𝐺‘𝑥)) |
22 | | simp2 1135 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝐺 = (𝑉 × {(0g‘𝐷)})) |
23 | | simp13 1203 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → (𝐿‘𝐺) = (𝐿‘𝐻)) |
24 | 11, 2 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ LMod) |
25 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐷) = (0g‘𝐷) |
26 | | eqlkr.l |
. . . . . . . . . . . . 13
⊢ 𝐿 = (LKer‘𝑊) |
27 | 3, 25, 15, 16, 26 | lkr0f 37035 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘𝐷)}))) |
28 | 24, 13, 27 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘𝐷)}))) |
29 | 22, 28 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → (𝐿‘𝐺) = 𝑉) |
30 | 23, 29 | eqtr3d 2780 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → (𝐿‘𝐻) = 𝑉) |
31 | | simp12r 1285 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝐻 ∈ 𝐹) |
32 | 3, 25, 15, 16, 26 | lkr0f 37035 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → ((𝐿‘𝐻) = 𝑉 ↔ 𝐻 = (𝑉 × {(0g‘𝐷)}))) |
33 | 24, 31, 32 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → ((𝐿‘𝐻) = 𝑉 ↔ 𝐻 = (𝑉 × {(0g‘𝐷)}))) |
34 | 30, 33 | mpbid 231 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝐻 = (𝑉 × {(0g‘𝐷)})) |
35 | 22, 34 | eqtr4d 2781 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝐺 = 𝐻) |
36 | 35 | fveq1d 6758 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) = (𝐻‘𝑥)) |
37 | 21, 36 | eqtr2d 2779 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → (𝐻‘𝑥) = ((𝐺‘𝑥) ·
(1r‘𝐷))) |
38 | 37 | 3expia 1119 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → (𝑥 ∈ 𝑉 → (𝐻‘𝑥) = ((𝐺‘𝑥) ·
(1r‘𝐷)))) |
39 | 38 | ralrimiv 3106 |
. . 3
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) ·
(1r‘𝐷))) |
40 | | oveq2 7263 |
. . . . . 6
⊢ (𝑟 = (1r‘𝐷) → ((𝐺‘𝑥) · 𝑟) = ((𝐺‘𝑥) ·
(1r‘𝐷))) |
41 | 40 | eqeq2d 2749 |
. . . . 5
⊢ (𝑟 = (1r‘𝐷) → ((𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟) ↔ (𝐻‘𝑥) = ((𝐺‘𝑥) ·
(1r‘𝐷)))) |
42 | 41 | ralbidv 3120 |
. . . 4
⊢ (𝑟 = (1r‘𝐷) → (∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟) ↔ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) ·
(1r‘𝐷)))) |
43 | 42 | rspcev 3552 |
. . 3
⊢
(((1r‘𝐷) ∈ 𝐾 ∧ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) ·
(1r‘𝐷)))
→ ∃𝑟 ∈
𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) |
44 | 10, 39, 43 | syl2anc 583 |
. 2
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) |
45 | | simpl1 1189 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → 𝑊 ∈ LVec) |
46 | | simpl2l 1224 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → 𝐺 ∈ 𝐹) |
47 | | simpr 484 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) |
48 | 3, 25, 8, 15, 16 | lfl1 37011 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → ∃𝑧 ∈ 𝑉 (𝐺‘𝑧) = (1r‘𝐷)) |
49 | 45, 46, 47, 48 | syl3anc 1369 |
. . 3
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → ∃𝑧 ∈ 𝑉 (𝐺‘𝑧) = (1r‘𝐷)) |
50 | | simpl1 1189 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷))) → 𝑊 ∈ LVec) |
51 | | simpl2r 1225 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷))) → 𝐻 ∈ 𝐹) |
52 | | simpr2 1193 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷))) → 𝑧 ∈ 𝑉) |
53 | 3, 7, 15, 16 | lflcl 37005 |
. . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹 ∧ 𝑧 ∈ 𝑉) → (𝐻‘𝑧) ∈ 𝐾) |
54 | 50, 51, 52, 53 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷))) → (𝐻‘𝑧) ∈ 𝐾) |
55 | | simp11 1201 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ LVec) |
56 | 55, 2 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ LMod) |
57 | | simp12r 1285 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝐻 ∈ 𝐹) |
58 | | simp12l 1284 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝐺 ∈ 𝐹) |
59 | | simp3 1136 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) |
60 | 3, 7, 15, 16 | lflcl 37005 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝐾) |
61 | 56, 58, 59, 60 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝐾) |
62 | | simp22 1205 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝑧 ∈ 𝑉) |
63 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
64 | 3, 7, 19, 15, 63, 16 | lflmul 37009 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ ((𝐺‘𝑥) ∈ 𝐾 ∧ 𝑧 ∈ 𝑉)) → (𝐻‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) = ((𝐺‘𝑥) · (𝐻‘𝑧))) |
65 | 56, 57, 61, 62, 64 | syl112anc 1372 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐻‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) = ((𝐺‘𝑥) · (𝐻‘𝑧))) |
66 | 65 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐻‘𝑥)(-g‘𝐷)(𝐻‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = ((𝐻‘𝑥)(-g‘𝐷)((𝐺‘𝑥) · (𝐻‘𝑧)))) |
67 | 15, 3, 63, 7 | lmodvscl 20055 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LMod ∧ (𝐺‘𝑥) ∈ 𝐾 ∧ 𝑧 ∈ 𝑉) → ((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧) ∈ 𝑉) |
68 | 56, 61, 62, 67 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧) ∈ 𝑉) |
69 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(-g‘𝐷) = (-g‘𝐷) |
70 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(-g‘𝑊) = (-g‘𝑊) |
71 | 3, 69, 15, 70, 16 | lflsub 37008 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ (𝑥 ∈ 𝑉 ∧ ((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧) ∈ 𝑉)) → (𝐻‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = ((𝐻‘𝑥)(-g‘𝐷)(𝐻‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)))) |
72 | 56, 57, 59, 68, 71 | syl112anc 1372 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐻‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = ((𝐻‘𝑥)(-g‘𝐷)(𝐻‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)))) |
73 | 15, 70 | lmodvsubcl 20083 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑉 ∧ ((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧) ∈ 𝑉) → (𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ 𝑉) |
74 | 56, 59, 68, 73 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ 𝑉) |
75 | 3, 69, 15, 70, 16 | lflsub 37008 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑥 ∈ 𝑉 ∧ ((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧) ∈ 𝑉)) → (𝐺‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = ((𝐺‘𝑥)(-g‘𝐷)(𝐺‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)))) |
76 | 56, 58, 59, 68, 75 | syl112anc 1372 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐺‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = ((𝐺‘𝑥)(-g‘𝐷)(𝐺‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)))) |
77 | 55, 58, 59, 17 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝐾) |
78 | 3, 7, 19, 15, 63, 16 | lflmul 37009 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ((𝐺‘𝑥) ∈ 𝐾 ∧ 𝑧 ∈ 𝑉)) → (𝐺‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) = ((𝐺‘𝑥) · (𝐺‘𝑧))) |
79 | 56, 58, 77, 62, 78 | syl112anc 1372 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐺‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) = ((𝐺‘𝑥) · (𝐺‘𝑧))) |
80 | | simp23 1206 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑧) = (1r‘𝐷)) |
81 | 80 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥) · (𝐺‘𝑧)) = ((𝐺‘𝑥) ·
(1r‘𝐷))) |
82 | 55, 5 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝐷 ∈ Ring) |
83 | 82, 77, 20 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥) ·
(1r‘𝐷)) =
(𝐺‘𝑥)) |
84 | 79, 81, 83 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐺‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) = (𝐺‘𝑥)) |
85 | 84 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥)(-g‘𝐷)(𝐺‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = ((𝐺‘𝑥)(-g‘𝐷)(𝐺‘𝑥))) |
86 | 3 | lmodfgrp 20047 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑊 ∈ LMod → 𝐷 ∈ Grp) |
87 | 2, 86 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑊 ∈ LVec → 𝐷 ∈ Grp) |
88 | 55, 87 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝐷 ∈ Grp) |
89 | 7, 25, 69 | grpsubid 18574 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐷 ∈ Grp ∧ (𝐺‘𝑥) ∈ 𝐾) → ((𝐺‘𝑥)(-g‘𝐷)(𝐺‘𝑥)) = (0g‘𝐷)) |
90 | 88, 77, 89 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥)(-g‘𝐷)(𝐺‘𝑥)) = (0g‘𝐷)) |
91 | 76, 85, 90 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐺‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷)) |
92 | 15, 3, 25, 16, 26 | ellkr 37030 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ (𝐿‘𝐺) ↔ ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ 𝑉 ∧ (𝐺‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷)))) |
93 | 55, 58, 92 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ (𝐿‘𝐺) ↔ ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ 𝑉 ∧ (𝐺‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷)))) |
94 | 74, 91, 93 | mpbir2and 709 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ (𝐿‘𝐺)) |
95 | | simp13 1203 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐿‘𝐺) = (𝐿‘𝐻)) |
96 | 94, 95 | eleqtrd 2841 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ (𝐿‘𝐻)) |
97 | 15, 3, 25, 16, 26 | ellkr 37030 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹) → ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ (𝐿‘𝐻) ↔ ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷)))) |
98 | 55, 57, 97 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ (𝐿‘𝐻) ↔ ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷)))) |
99 | 96, 98 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷))) |
100 | 99 | simprd 495 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐻‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷)) |
101 | 72, 100 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐻‘𝑥)(-g‘𝐷)(𝐻‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷)) |
102 | 66, 101 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐻‘𝑥)(-g‘𝐷)((𝐺‘𝑥) · (𝐻‘𝑧))) = (0g‘𝐷)) |
103 | 3, 7, 15, 16 | lflcl 37005 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹 ∧ 𝑥 ∈ 𝑉) → (𝐻‘𝑥) ∈ 𝐾) |
104 | 55, 57, 59, 103 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐻‘𝑥) ∈ 𝐾) |
105 | 54 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐻‘𝑧) ∈ 𝐾) |
106 | 3, 7, 19 | lmodmcl 20050 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ (𝐺‘𝑥) ∈ 𝐾 ∧ (𝐻‘𝑧) ∈ 𝐾) → ((𝐺‘𝑥) · (𝐻‘𝑧)) ∈ 𝐾) |
107 | 56, 77, 105, 106 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥) · (𝐻‘𝑧)) ∈ 𝐾) |
108 | 7, 25, 69 | grpsubeq0 18576 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ Grp ∧ (𝐻‘𝑥) ∈ 𝐾 ∧ ((𝐺‘𝑥) · (𝐻‘𝑧)) ∈ 𝐾) → (((𝐻‘𝑥)(-g‘𝐷)((𝐺‘𝑥) · (𝐻‘𝑧))) = (0g‘𝐷) ↔ (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧)))) |
109 | 88, 104, 107, 108 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (((𝐻‘𝑥)(-g‘𝐷)((𝐺‘𝑥) · (𝐻‘𝑧))) = (0g‘𝐷) ↔ (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧)))) |
110 | 102, 109 | mpbid 231 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧))) |
111 | 110 | 3expia 1119 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷))) → (𝑥 ∈ 𝑉 → (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧)))) |
112 | 111 | ralrimiv 3106 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷))) → ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧))) |
113 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑟 = (𝐻‘𝑧) → ((𝐺‘𝑥) · 𝑟) = ((𝐺‘𝑥) · (𝐻‘𝑧))) |
114 | 113 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑟 = (𝐻‘𝑧) → ((𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟) ↔ (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧)))) |
115 | 114 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑟 = (𝐻‘𝑧) → (∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟) ↔ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧)))) |
116 | 115 | rspcev 3552 |
. . . . . . 7
⊢ (((𝐻‘𝑧) ∈ 𝐾 ∧ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧))) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) |
117 | 54, 112, 116 | syl2anc 583 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷))) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) |
118 | 117 | 3exp2 1352 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) → (𝑧 ∈ 𝑉 → ((𝐺‘𝑧) = (1r‘𝐷) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟))))) |
119 | 118 | imp 406 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → (𝑧 ∈ 𝑉 → ((𝐺‘𝑧) = (1r‘𝐷) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)))) |
120 | 119 | rexlimdv 3211 |
. . 3
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → (∃𝑧 ∈ 𝑉 (𝐺‘𝑧) = (1r‘𝐷) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟))) |
121 | 49, 120 | mpd 15 |
. 2
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) |
122 | 44, 121 | pm2.61dane 3031 |
1
⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) |