| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl1 1192 | . . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → 𝑊 ∈ LVec) | 
| 2 |  | lveclmod 21105 | . . . . . 6
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | 
| 3 |  | eqlkr.d | . . . . . . 7
⊢ 𝐷 = (Scalar‘𝑊) | 
| 4 | 3 | lmodring 20866 | . . . . . 6
⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) | 
| 5 | 2, 4 | syl 17 | . . . . 5
⊢ (𝑊 ∈ LVec → 𝐷 ∈ Ring) | 
| 6 | 1, 5 | syl 17 | . . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → 𝐷 ∈ Ring) | 
| 7 |  | eqlkr.k | . . . . 5
⊢ 𝐾 = (Base‘𝐷) | 
| 8 |  | eqid 2737 | . . . . 5
⊢
(1r‘𝐷) = (1r‘𝐷) | 
| 9 | 7, 8 | ringidcl 20262 | . . . 4
⊢ (𝐷 ∈ Ring →
(1r‘𝐷)
∈ 𝐾) | 
| 10 | 6, 9 | syl 17 | . . 3
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) →
(1r‘𝐷)
∈ 𝐾) | 
| 11 |  | simp11 1204 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ LVec) | 
| 12 | 11, 5 | syl 17 | . . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝐷 ∈ Ring) | 
| 13 |  | simp12l 1287 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝐺 ∈ 𝐹) | 
| 14 |  | simp3 1139 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) | 
| 15 |  | eqlkr.v | . . . . . . . . 9
⊢ 𝑉 = (Base‘𝑊) | 
| 16 |  | eqlkr.f | . . . . . . . . 9
⊢ 𝐹 = (LFnl‘𝑊) | 
| 17 | 3, 7, 15, 16 | lflcl 39065 | . . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝐾) | 
| 18 | 11, 13, 14, 17 | syl3anc 1373 | . . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝐾) | 
| 19 |  | eqlkr.t | . . . . . . . 8
⊢  · =
(.r‘𝐷) | 
| 20 | 7, 19, 8 | ringridm 20267 | . . . . . . 7
⊢ ((𝐷 ∈ Ring ∧ (𝐺‘𝑥) ∈ 𝐾) → ((𝐺‘𝑥) ·
(1r‘𝐷)) =
(𝐺‘𝑥)) | 
| 21 | 12, 18, 20 | syl2anc 584 | . . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥) ·
(1r‘𝐷)) =
(𝐺‘𝑥)) | 
| 22 |  | simp2 1138 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝐺 = (𝑉 × {(0g‘𝐷)})) | 
| 23 |  | simp13 1206 | . . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → (𝐿‘𝐺) = (𝐿‘𝐻)) | 
| 24 | 11, 2 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ LMod) | 
| 25 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢
(0g‘𝐷) = (0g‘𝐷) | 
| 26 |  | eqlkr.l | . . . . . . . . . . . . 13
⊢ 𝐿 = (LKer‘𝑊) | 
| 27 | 3, 25, 15, 16, 26 | lkr0f 39095 | . . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘𝐷)}))) | 
| 28 | 24, 13, 27 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → ((𝐿‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × {(0g‘𝐷)}))) | 
| 29 | 22, 28 | mpbird 257 | . . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → (𝐿‘𝐺) = 𝑉) | 
| 30 | 23, 29 | eqtr3d 2779 | . . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → (𝐿‘𝐻) = 𝑉) | 
| 31 |  | simp12r 1288 | . . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝐻 ∈ 𝐹) | 
| 32 | 3, 25, 15, 16, 26 | lkr0f 39095 | . . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → ((𝐿‘𝐻) = 𝑉 ↔ 𝐻 = (𝑉 × {(0g‘𝐷)}))) | 
| 33 | 24, 31, 32 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → ((𝐿‘𝐻) = 𝑉 ↔ 𝐻 = (𝑉 × {(0g‘𝐷)}))) | 
| 34 | 30, 33 | mpbid 232 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝐻 = (𝑉 × {(0g‘𝐷)})) | 
| 35 | 22, 34 | eqtr4d 2780 | . . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → 𝐺 = 𝐻) | 
| 36 | 35 | fveq1d 6908 | . . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) = (𝐻‘𝑥)) | 
| 37 | 21, 36 | eqtr2d 2778 | . . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)}) ∧ 𝑥 ∈ 𝑉) → (𝐻‘𝑥) = ((𝐺‘𝑥) ·
(1r‘𝐷))) | 
| 38 | 37 | 3expia 1122 | . . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → (𝑥 ∈ 𝑉 → (𝐻‘𝑥) = ((𝐺‘𝑥) ·
(1r‘𝐷)))) | 
| 39 | 38 | ralrimiv 3145 | . . 3
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) ·
(1r‘𝐷))) | 
| 40 |  | oveq2 7439 | . . . . . 6
⊢ (𝑟 = (1r‘𝐷) → ((𝐺‘𝑥) · 𝑟) = ((𝐺‘𝑥) ·
(1r‘𝐷))) | 
| 41 | 40 | eqeq2d 2748 | . . . . 5
⊢ (𝑟 = (1r‘𝐷) → ((𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟) ↔ (𝐻‘𝑥) = ((𝐺‘𝑥) ·
(1r‘𝐷)))) | 
| 42 | 41 | ralbidv 3178 | . . . 4
⊢ (𝑟 = (1r‘𝐷) → (∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟) ↔ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) ·
(1r‘𝐷)))) | 
| 43 | 42 | rspcev 3622 | . . 3
⊢
(((1r‘𝐷) ∈ 𝐾 ∧ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) ·
(1r‘𝐷)))
→ ∃𝑟 ∈
𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) | 
| 44 | 10, 39, 43 | syl2anc 584 | . 2
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 = (𝑉 × {(0g‘𝐷)})) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) | 
| 45 |  | simpl1 1192 | . . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → 𝑊 ∈ LVec) | 
| 46 |  | simpl2l 1227 | . . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → 𝐺 ∈ 𝐹) | 
| 47 |  | simpr 484 | . . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) | 
| 48 | 3, 25, 8, 15, 16 | lfl1 39071 | . . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → ∃𝑧 ∈ 𝑉 (𝐺‘𝑧) = (1r‘𝐷)) | 
| 49 | 45, 46, 47, 48 | syl3anc 1373 | . . 3
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → ∃𝑧 ∈ 𝑉 (𝐺‘𝑧) = (1r‘𝐷)) | 
| 50 |  | simpl1 1192 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷))) → 𝑊 ∈ LVec) | 
| 51 |  | simpl2r 1228 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷))) → 𝐻 ∈ 𝐹) | 
| 52 |  | simpr2 1196 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷))) → 𝑧 ∈ 𝑉) | 
| 53 | 3, 7, 15, 16 | lflcl 39065 | . . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹 ∧ 𝑧 ∈ 𝑉) → (𝐻‘𝑧) ∈ 𝐾) | 
| 54 | 50, 51, 52, 53 | syl3anc 1373 | . . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷))) → (𝐻‘𝑧) ∈ 𝐾) | 
| 55 |  | simp11 1204 | . . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ LVec) | 
| 56 | 55, 2 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ LMod) | 
| 57 |  | simp12r 1288 | . . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝐻 ∈ 𝐹) | 
| 58 |  | simp12l 1287 | . . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝐺 ∈ 𝐹) | 
| 59 |  | simp3 1139 | . . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) | 
| 60 | 3, 7, 15, 16 | lflcl 39065 | . . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝐾) | 
| 61 | 56, 58, 59, 60 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝐾) | 
| 62 |  | simp22 1208 | . . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝑧 ∈ 𝑉) | 
| 63 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) | 
| 64 | 3, 7, 19, 15, 63, 16 | lflmul 39069 | . . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ ((𝐺‘𝑥) ∈ 𝐾 ∧ 𝑧 ∈ 𝑉)) → (𝐻‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) = ((𝐺‘𝑥) · (𝐻‘𝑧))) | 
| 65 | 56, 57, 61, 62, 64 | syl112anc 1376 | . . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐻‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) = ((𝐺‘𝑥) · (𝐻‘𝑧))) | 
| 66 | 65 | oveq2d 7447 | . . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐻‘𝑥)(-g‘𝐷)(𝐻‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = ((𝐻‘𝑥)(-g‘𝐷)((𝐺‘𝑥) · (𝐻‘𝑧)))) | 
| 67 | 15, 3, 63, 7 | lmodvscl 20876 | . . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LMod ∧ (𝐺‘𝑥) ∈ 𝐾 ∧ 𝑧 ∈ 𝑉) → ((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧) ∈ 𝑉) | 
| 68 | 56, 61, 62, 67 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧) ∈ 𝑉) | 
| 69 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢
(-g‘𝐷) = (-g‘𝐷) | 
| 70 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢
(-g‘𝑊) = (-g‘𝑊) | 
| 71 | 3, 69, 15, 70, 16 | lflsub 39068 | . . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ (𝑥 ∈ 𝑉 ∧ ((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧) ∈ 𝑉)) → (𝐻‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = ((𝐻‘𝑥)(-g‘𝐷)(𝐻‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)))) | 
| 72 | 56, 57, 59, 68, 71 | syl112anc 1376 | . . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐻‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = ((𝐻‘𝑥)(-g‘𝐷)(𝐻‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)))) | 
| 73 | 15, 70 | lmodvsubcl 20905 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑉 ∧ ((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧) ∈ 𝑉) → (𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ 𝑉) | 
| 74 | 56, 59, 68, 73 | syl3anc 1373 | . . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ 𝑉) | 
| 75 | 3, 69, 15, 70, 16 | lflsub 39068 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑥 ∈ 𝑉 ∧ ((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧) ∈ 𝑉)) → (𝐺‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = ((𝐺‘𝑥)(-g‘𝐷)(𝐺‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)))) | 
| 76 | 56, 58, 59, 68, 75 | syl112anc 1376 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐺‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = ((𝐺‘𝑥)(-g‘𝐷)(𝐺‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)))) | 
| 77 | 55, 58, 59, 17 | syl3anc 1373 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝐾) | 
| 78 | 3, 7, 19, 15, 63, 16 | lflmul 39069 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ((𝐺‘𝑥) ∈ 𝐾 ∧ 𝑧 ∈ 𝑉)) → (𝐺‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) = ((𝐺‘𝑥) · (𝐺‘𝑧))) | 
| 79 | 56, 58, 77, 62, 78 | syl112anc 1376 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐺‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) = ((𝐺‘𝑥) · (𝐺‘𝑧))) | 
| 80 |  | simp23 1209 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑧) = (1r‘𝐷)) | 
| 81 | 80 | oveq2d 7447 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥) · (𝐺‘𝑧)) = ((𝐺‘𝑥) ·
(1r‘𝐷))) | 
| 82 | 55, 5 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝐷 ∈ Ring) | 
| 83 | 82, 77, 20 | syl2anc 584 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥) ·
(1r‘𝐷)) =
(𝐺‘𝑥)) | 
| 84 | 79, 81, 83 | 3eqtrd 2781 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐺‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) = (𝐺‘𝑥)) | 
| 85 | 84 | oveq2d 7447 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥)(-g‘𝐷)(𝐺‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = ((𝐺‘𝑥)(-g‘𝐷)(𝐺‘𝑥))) | 
| 86 | 3 | lmodfgrp 20867 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑊 ∈ LMod → 𝐷 ∈ Grp) | 
| 87 | 2, 86 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑊 ∈ LVec → 𝐷 ∈ Grp) | 
| 88 | 55, 87 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → 𝐷 ∈ Grp) | 
| 89 | 7, 25, 69 | grpsubid 19042 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐷 ∈ Grp ∧ (𝐺‘𝑥) ∈ 𝐾) → ((𝐺‘𝑥)(-g‘𝐷)(𝐺‘𝑥)) = (0g‘𝐷)) | 
| 90 | 88, 77, 89 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥)(-g‘𝐷)(𝐺‘𝑥)) = (0g‘𝐷)) | 
| 91 | 76, 85, 90 | 3eqtrd 2781 | . . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐺‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷)) | 
| 92 | 15, 3, 25, 16, 26 | ellkr 39090 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ (𝐿‘𝐺) ↔ ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ 𝑉 ∧ (𝐺‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷)))) | 
| 93 | 55, 58, 92 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ (𝐿‘𝐺) ↔ ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ 𝑉 ∧ (𝐺‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷)))) | 
| 94 | 74, 91, 93 | mpbir2and 713 | . . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ (𝐿‘𝐺)) | 
| 95 |  | simp13 1206 | . . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐿‘𝐺) = (𝐿‘𝐻)) | 
| 96 | 94, 95 | eleqtrd 2843 | . . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ (𝐿‘𝐻)) | 
| 97 | 15, 3, 25, 16, 26 | ellkr 39090 | . . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹) → ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ (𝐿‘𝐻) ↔ ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷)))) | 
| 98 | 55, 57, 97 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ (𝐿‘𝐻) ↔ ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷)))) | 
| 99 | 96, 98 | mpbid 232 | . . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷))) | 
| 100 | 99 | simprd 495 | . . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐻‘(𝑥(-g‘𝑊)((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷)) | 
| 101 | 72, 100 | eqtr3d 2779 | . . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐻‘𝑥)(-g‘𝐷)(𝐻‘((𝐺‘𝑥)( ·𝑠
‘𝑊)𝑧))) = (0g‘𝐷)) | 
| 102 | 66, 101 | eqtr3d 2779 | . . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐻‘𝑥)(-g‘𝐷)((𝐺‘𝑥) · (𝐻‘𝑧))) = (0g‘𝐷)) | 
| 103 | 3, 7, 15, 16 | lflcl 39065 | . . . . . . . . . . . 12
⊢ ((𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹 ∧ 𝑥 ∈ 𝑉) → (𝐻‘𝑥) ∈ 𝐾) | 
| 104 | 55, 57, 59, 103 | syl3anc 1373 | . . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐻‘𝑥) ∈ 𝐾) | 
| 105 | 54 | 3adant3 1133 | . . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐻‘𝑧) ∈ 𝐾) | 
| 106 | 3, 7, 19 | lmodmcl 20871 | . . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ (𝐺‘𝑥) ∈ 𝐾 ∧ (𝐻‘𝑧) ∈ 𝐾) → ((𝐺‘𝑥) · (𝐻‘𝑧)) ∈ 𝐾) | 
| 107 | 56, 77, 105, 106 | syl3anc 1373 | . . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥) · (𝐻‘𝑧)) ∈ 𝐾) | 
| 108 | 7, 25, 69 | grpsubeq0 19044 | . . . . . . . . . . 11
⊢ ((𝐷 ∈ Grp ∧ (𝐻‘𝑥) ∈ 𝐾 ∧ ((𝐺‘𝑥) · (𝐻‘𝑧)) ∈ 𝐾) → (((𝐻‘𝑥)(-g‘𝐷)((𝐺‘𝑥) · (𝐻‘𝑧))) = (0g‘𝐷) ↔ (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧)))) | 
| 109 | 88, 104, 107, 108 | syl3anc 1373 | . . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (((𝐻‘𝑥)(-g‘𝐷)((𝐺‘𝑥) · (𝐻‘𝑧))) = (0g‘𝐷) ↔ (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧)))) | 
| 110 | 102, 109 | mpbid 232 | . . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷)) ∧ 𝑥 ∈ 𝑉) → (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧))) | 
| 111 | 110 | 3expia 1122 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷))) → (𝑥 ∈ 𝑉 → (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧)))) | 
| 112 | 111 | ralrimiv 3145 | . . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷))) → ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧))) | 
| 113 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑟 = (𝐻‘𝑧) → ((𝐺‘𝑥) · 𝑟) = ((𝐺‘𝑥) · (𝐻‘𝑧))) | 
| 114 | 113 | eqeq2d 2748 | . . . . . . . . 9
⊢ (𝑟 = (𝐻‘𝑧) → ((𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟) ↔ (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧)))) | 
| 115 | 114 | ralbidv 3178 | . . . . . . . 8
⊢ (𝑟 = (𝐻‘𝑧) → (∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟) ↔ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧)))) | 
| 116 | 115 | rspcev 3622 | . . . . . . 7
⊢ (((𝐻‘𝑧) ∈ 𝐾 ∧ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · (𝐻‘𝑧))) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) | 
| 117 | 54, 112, 116 | syl2anc 584 | . . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) = (1r‘𝐷))) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) | 
| 118 | 117 | 3exp2 1355 | . . . . 5
⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → (𝐺 ≠ (𝑉 × {(0g‘𝐷)}) → (𝑧 ∈ 𝑉 → ((𝐺‘𝑧) = (1r‘𝐷) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟))))) | 
| 119 | 118 | imp 406 | . . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → (𝑧 ∈ 𝑉 → ((𝐺‘𝑧) = (1r‘𝐷) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)))) | 
| 120 | 119 | rexlimdv 3153 | . . 3
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → (∃𝑧 ∈ 𝑉 (𝐺‘𝑧) = (1r‘𝐷) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟))) | 
| 121 | 49, 120 | mpd 15 | . 2
⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g‘𝐷)})) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) | 
| 122 | 44, 121 | pm2.61dane 3029 | 1
⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) |