Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr Structured version   Visualization version   GIF version

Theorem eqlkr 37040
Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
eqlkr.d 𝐷 = (Scalar‘𝑊)
eqlkr.k 𝐾 = (Base‘𝐷)
eqlkr.t · = (.r𝐷)
eqlkr.v 𝑉 = (Base‘𝑊)
eqlkr.f 𝐹 = (LFnl‘𝑊)
eqlkr.l 𝐿 = (LKer‘𝑊)
Assertion
Ref Expression
eqlkr ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
Distinct variable groups:   𝑥,𝑟,𝐷   𝑥,𝐹   𝐺,𝑟,𝑥   𝐻,𝑟,𝑥   𝑉,𝑟,𝑥   𝐾,𝑟   𝑥,𝐿   · ,𝑟   𝑥,𝑊
Allowed substitution hints:   · (𝑥)   𝐹(𝑟)   𝐾(𝑥)   𝐿(𝑟)   𝑊(𝑟)

Proof of Theorem eqlkr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1189 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LVec)
2 lveclmod 20283 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
3 eqlkr.d . . . . . . 7 𝐷 = (Scalar‘𝑊)
43lmodring 20046 . . . . . 6 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
52, 4syl 17 . . . . 5 (𝑊 ∈ LVec → 𝐷 ∈ Ring)
61, 5syl 17 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → 𝐷 ∈ Ring)
7 eqlkr.k . . . . 5 𝐾 = (Base‘𝐷)
8 eqid 2738 . . . . 5 (1r𝐷) = (1r𝐷)
97, 8ringidcl 19722 . . . 4 (𝐷 ∈ Ring → (1r𝐷) ∈ 𝐾)
106, 9syl 17 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (1r𝐷) ∈ 𝐾)
11 simp11 1201 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝑊 ∈ LVec)
1211, 5syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐷 ∈ Ring)
13 simp12l 1284 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐺𝐹)
14 simp3 1136 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝑥𝑉)
15 eqlkr.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
16 eqlkr.f . . . . . . . . 9 𝐹 = (LFnl‘𝑊)
173, 7, 15, 16lflcl 37005 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
1811, 13, 14, 17syl3anc 1369 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
19 eqlkr.t . . . . . . . 8 · = (.r𝐷)
207, 19, 8ringridm 19726 . . . . . . 7 ((𝐷 ∈ Ring ∧ (𝐺𝑥) ∈ 𝐾) → ((𝐺𝑥) · (1r𝐷)) = (𝐺𝑥))
2112, 18, 20syl2anc 583 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → ((𝐺𝑥) · (1r𝐷)) = (𝐺𝑥))
22 simp2 1135 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐺 = (𝑉 × {(0g𝐷)}))
23 simp13 1203 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐿𝐺) = (𝐿𝐻))
2411, 2syl 17 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝑊 ∈ LMod)
25 eqid 2738 . . . . . . . . . . . . 13 (0g𝐷) = (0g𝐷)
26 eqlkr.l . . . . . . . . . . . . 13 𝐿 = (LKer‘𝑊)
273, 25, 15, 16, 26lkr0f 37035 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
2824, 13, 27syl2anc 583 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
2922, 28mpbird 256 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐿𝐺) = 𝑉)
3023, 29eqtr3d 2780 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐿𝐻) = 𝑉)
31 simp12r 1285 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐻𝐹)
323, 25, 15, 16, 26lkr0f 37035 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → ((𝐿𝐻) = 𝑉𝐻 = (𝑉 × {(0g𝐷)})))
3324, 31, 32syl2anc 583 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → ((𝐿𝐻) = 𝑉𝐻 = (𝑉 × {(0g𝐷)})))
3430, 33mpbid 231 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐻 = (𝑉 × {(0g𝐷)}))
3522, 34eqtr4d 2781 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐺 = 𝐻)
3635fveq1d 6758 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐺𝑥) = (𝐻𝑥))
3721, 36eqtr2d 2779 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷)))
38373expia 1119 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (𝑥𝑉 → (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷))))
3938ralrimiv 3106 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷)))
40 oveq2 7263 . . . . . 6 (𝑟 = (1r𝐷) → ((𝐺𝑥) · 𝑟) = ((𝐺𝑥) · (1r𝐷)))
4140eqeq2d 2749 . . . . 5 (𝑟 = (1r𝐷) → ((𝐻𝑥) = ((𝐺𝑥) · 𝑟) ↔ (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷))))
4241ralbidv 3120 . . . 4 (𝑟 = (1r𝐷) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷))))
4342rspcev 3552 . . 3 (((1r𝐷) ∈ 𝐾 ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷))) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
4410, 39, 43syl2anc 583 . 2 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
45 simpl1 1189 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LVec)
46 simpl2l 1224 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → 𝐺𝐹)
47 simpr 484 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → 𝐺 ≠ (𝑉 × {(0g𝐷)}))
483, 25, 8, 15, 16lfl1 37011 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × {(0g𝐷)})) → ∃𝑧𝑉 (𝐺𝑧) = (1r𝐷))
4945, 46, 47, 48syl3anc 1369 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → ∃𝑧𝑉 (𝐺𝑧) = (1r𝐷))
50 simpl1 1189 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → 𝑊 ∈ LVec)
51 simpl2r 1225 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → 𝐻𝐹)
52 simpr2 1193 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → 𝑧𝑉)
533, 7, 15, 16lflcl 37005 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐻𝐹𝑧𝑉) → (𝐻𝑧) ∈ 𝐾)
5450, 51, 52, 53syl3anc 1369 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → (𝐻𝑧) ∈ 𝐾)
55 simp11 1201 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝑊 ∈ LVec)
5655, 2syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝑊 ∈ LMod)
57 simp12r 1285 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝐻𝐹)
58 simp12l 1284 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝐺𝐹)
59 simp3 1136 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝑥𝑉)
603, 7, 15, 16lflcl 37005 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
6156, 58, 59, 60syl3anc 1369 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
62 simp22 1205 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝑧𝑉)
63 eqid 2738 . . . . . . . . . . . . . 14 ( ·𝑠𝑊) = ( ·𝑠𝑊)
643, 7, 19, 15, 63, 16lflmul 37009 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐻𝐹 ∧ ((𝐺𝑥) ∈ 𝐾𝑧𝑉)) → (𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = ((𝐺𝑥) · (𝐻𝑧)))
6556, 57, 61, 62, 64syl112anc 1372 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = ((𝐺𝑥) · (𝐻𝑧)))
6665oveq2d 7271 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐻𝑥)(-g𝐷)(𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐻𝑥)(-g𝐷)((𝐺𝑥) · (𝐻𝑧))))
6715, 3, 63, 7lmodvscl 20055 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝐺𝑥) ∈ 𝐾𝑧𝑉) → ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉)
6856, 61, 62, 67syl3anc 1369 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉)
69 eqid 2738 . . . . . . . . . . . . . 14 (-g𝐷) = (-g𝐷)
70 eqid 2738 . . . . . . . . . . . . . 14 (-g𝑊) = (-g𝑊)
713, 69, 15, 70, 16lflsub 37008 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐻𝐹 ∧ (𝑥𝑉 ∧ ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉)) → (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐻𝑥)(-g𝐷)(𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧))))
7256, 57, 59, 68, 71syl112anc 1372 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐻𝑥)(-g𝐷)(𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧))))
7315, 70lmodvsubcl 20083 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LMod ∧ 𝑥𝑉 ∧ ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉) → (𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉)
7456, 59, 68, 73syl3anc 1369 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉)
753, 69, 15, 70, 16lflsub 37008 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑥𝑉 ∧ ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉)) → (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐺𝑥)(-g𝐷)(𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧))))
7656, 58, 59, 68, 75syl112anc 1372 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐺𝑥)(-g𝐷)(𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧))))
7755, 58, 59, 17syl3anc 1369 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
783, 7, 19, 15, 63, 16lflmul 37009 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ ((𝐺𝑥) ∈ 𝐾𝑧𝑉)) → (𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = ((𝐺𝑥) · (𝐺𝑧)))
7956, 58, 77, 62, 78syl112anc 1372 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = ((𝐺𝑥) · (𝐺𝑧)))
80 simp23 1206 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺𝑧) = (1r𝐷))
8180oveq2d 7271 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥) · (𝐺𝑧)) = ((𝐺𝑥) · (1r𝐷)))
8255, 5syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝐷 ∈ Ring)
8382, 77, 20syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥) · (1r𝐷)) = (𝐺𝑥))
8479, 81, 833eqtrd 2782 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = (𝐺𝑥))
8584oveq2d 7271 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥)(-g𝐷)(𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐺𝑥)(-g𝐷)(𝐺𝑥)))
863lmodfgrp 20047 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
872, 86syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ LVec → 𝐷 ∈ Grp)
8855, 87syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝐷 ∈ Grp)
897, 25, 69grpsubid 18574 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ Grp ∧ (𝐺𝑥) ∈ 𝐾) → ((𝐺𝑥)(-g𝐷)(𝐺𝑥)) = (0g𝐷))
9088, 77, 89syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥)(-g𝐷)(𝐺𝑥)) = (0g𝐷))
9176, 85, 903eqtrd 2782 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))
9215, 3, 25, 16, 26ellkr 37030 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐺) ↔ ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))))
9355, 58, 92syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐺) ↔ ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))))
9474, 91, 93mpbir2and 709 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐺))
95 simp13 1203 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐿𝐺) = (𝐿𝐻))
9694, 95eleqtrd 2841 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐻))
9715, 3, 25, 16, 26ellkr 37030 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LVec ∧ 𝐻𝐹) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐻) ↔ ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))))
9855, 57, 97syl2anc 583 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐻) ↔ ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))))
9996, 98mpbid 231 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷)))
10099simprd 495 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))
10172, 100eqtr3d 2780 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐻𝑥)(-g𝐷)(𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))
10266, 101eqtr3d 2780 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐻𝑥)(-g𝐷)((𝐺𝑥) · (𝐻𝑧))) = (0g𝐷))
1033, 7, 15, 16lflcl 37005 . . . . . . . . . . . 12 ((𝑊 ∈ LVec ∧ 𝐻𝐹𝑥𝑉) → (𝐻𝑥) ∈ 𝐾)
10455, 57, 59, 103syl3anc 1369 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻𝑥) ∈ 𝐾)
105543adant3 1130 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻𝑧) ∈ 𝐾)
1063, 7, 19lmodmcl 20050 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝐺𝑥) ∈ 𝐾 ∧ (𝐻𝑧) ∈ 𝐾) → ((𝐺𝑥) · (𝐻𝑧)) ∈ 𝐾)
10756, 77, 105, 106syl3anc 1369 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥) · (𝐻𝑧)) ∈ 𝐾)
1087, 25, 69grpsubeq0 18576 . . . . . . . . . . 11 ((𝐷 ∈ Grp ∧ (𝐻𝑥) ∈ 𝐾 ∧ ((𝐺𝑥) · (𝐻𝑧)) ∈ 𝐾) → (((𝐻𝑥)(-g𝐷)((𝐺𝑥) · (𝐻𝑧))) = (0g𝐷) ↔ (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
10988, 104, 107, 108syl3anc 1369 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (((𝐻𝑥)(-g𝐷)((𝐺𝑥) · (𝐻𝑧))) = (0g𝐷) ↔ (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
110102, 109mpbid 231 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧)))
1111103expia 1119 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → (𝑥𝑉 → (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
112111ralrimiv 3106 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧)))
113 oveq2 7263 . . . . . . . . . 10 (𝑟 = (𝐻𝑧) → ((𝐺𝑥) · 𝑟) = ((𝐺𝑥) · (𝐻𝑧)))
114113eqeq2d 2749 . . . . . . . . 9 (𝑟 = (𝐻𝑧) → ((𝐻𝑥) = ((𝐺𝑥) · 𝑟) ↔ (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
115114ralbidv 3120 . . . . . . . 8 (𝑟 = (𝐻𝑧) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
116115rspcev 3552 . . . . . . 7 (((𝐻𝑧) ∈ 𝐾 ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
11754, 112, 116syl2anc 583 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
1181173exp2 1352 . . . . 5 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → (𝐺 ≠ (𝑉 × {(0g𝐷)}) → (𝑧𝑉 → ((𝐺𝑧) = (1r𝐷) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟)))))
119118imp 406 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → (𝑧𝑉 → ((𝐺𝑧) = (1r𝐷) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))))
120119rexlimdv 3211 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → (∃𝑧𝑉 (𝐺𝑧) = (1r𝐷) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟)))
12149, 120mpd 15 . 2 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
12244, 121pm2.61dane 3031 1 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {csn 4558   × cxp 5578  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  1rcur 19652  Ringcrg 19698  LModclmod 20038  LVecclvec 20279  LFnlclfn 36998  LKerclk 37026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lvec 20280  df-lfl 36999  df-lkr 37027
This theorem is referenced by:  eqlkr2  37041  eqlkr3  37042
  Copyright terms: Public domain W3C validator