Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5blem2 Structured version   Visualization version   GIF version

Theorem baerlem5blem2 41731
Description: Lemma for baerlem5b 41734. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
baerlem5blem2 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))

Proof of Theorem baerlem5blem2
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 baerlem3.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 21064 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 baerlem3.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
54eldifad 3938 . . . 4 (𝜑𝑌𝑉)
6 baerlem3.z . . . . 5 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
76eldifad 3938 . . . 4 (𝜑𝑍𝑉)
8 baerlem3.v . . . . 5 𝑉 = (Base‘𝑊)
9 baerlem3.p . . . . 5 + = (+g𝑊)
10 baerlem3.n . . . . 5 𝑁 = (LSpan‘𝑊)
11 baerlem3.s . . . . 5 = (LSSum‘𝑊)
128, 9, 10, 11lspsntri 21055 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
133, 5, 7, 12syl3anc 1373 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
14 baerlem3.m . . . . . 6 = (-g𝑊)
15 baerlem3.x . . . . . . 7 (𝜑𝑋𝑉)
168, 9lmodvacl 20832 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
173, 5, 7, 16syl3anc 1373 . . . . . . 7 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
188, 14lmodvsubcl 20864 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
193, 15, 17, 18syl3anc 1373 . . . . . 6 (𝜑 → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
208, 14, 10, 3, 19, 15lspsnsub 20964 . . . . 5 (𝜑 → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) = (𝑁‘{(𝑋 (𝑋 (𝑌 + 𝑍)))}))
21 lmodabl 20866 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
223, 21syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Abel)
238, 14, 22, 15, 17ablnncan 19801 . . . . . . 7 (𝜑 → (𝑋 (𝑋 (𝑌 + 𝑍))) = (𝑌 + 𝑍))
2423sneqd 4613 . . . . . 6 (𝜑 → {(𝑋 (𝑋 (𝑌 + 𝑍)))} = {(𝑌 + 𝑍)})
2524fveq2d 6880 . . . . 5 (𝜑 → (𝑁‘{(𝑋 (𝑋 (𝑌 + 𝑍)))}) = (𝑁‘{(𝑌 + 𝑍)}))
2620, 25eqtrd 2770 . . . 4 (𝜑 → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) = (𝑁‘{(𝑌 + 𝑍)}))
278, 14, 11, 10lspsntrim 21056 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 (𝑌 + 𝑍)) ∈ 𝑉𝑋𝑉) → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) ⊆ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})))
283, 19, 15, 27syl3anc 1373 . . . 4 (𝜑 → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) ⊆ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})))
2926, 28eqsstrrd 3994 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})))
3013, 29ssind 4216 . 2 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))
31 elin 3942 . . . . 5 (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ↔ (𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))
32 baerlem3.r . . . . . . 7 𝑅 = (Scalar‘𝑊)
33 baerlem3.b . . . . . . 7 𝐵 = (Base‘𝑅)
34 baerlem3.t . . . . . . 7 · = ( ·𝑠𝑊)
358, 9, 32, 33, 34, 11, 10, 3, 5, 7lsmspsn 21042 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ↔ ∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))))
368, 9, 32, 33, 34, 11, 10, 3, 19, 15lsmspsn 21042 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})) ↔ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))))
3735, 36anbi12d 632 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)))))
3831, 37bitrid 283 . . . 4 (𝜑 → (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)))))
39 baerlem3.o . . . . . . . . . . 11 0 = (0g𝑊)
40 simp11 1204 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝜑)
4140, 1syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑊 ∈ LVec)
4240, 15syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑋𝑉)
43 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
4440, 43syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
45 baerlem3.d . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4640, 45syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4740, 4syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4840, 6syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
49 baerlem3.a . . . . . . . . . . 11 = (+g𝑅)
50 baerlem3.l . . . . . . . . . . 11 𝐿 = (-g𝑅)
51 baerlem3.q . . . . . . . . . . 11 𝑄 = (0g𝑅)
52 baerlem3.i . . . . . . . . . . 11 𝐼 = (invg𝑅)
53 simp12l 1287 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑎𝐵)
54 simp12r 1288 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑏𝐵)
55 simp2l 1200 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑑𝐵)
56 simp2r 1201 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑒𝐵)
57 simp13 1206 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)))
58 simp3 1138 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)))
598, 14, 39, 11, 10, 41, 42, 44, 46, 47, 48, 9, 34, 32, 33, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58baerlem5blem1 41728 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 = ((𝐼𝑑) · (𝑌 + 𝑍)))
6040, 3syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑊 ∈ LMod)
6132lmodring 20825 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
62 ringgrp 20198 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
6340, 3, 61, 624syl 19 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑅 ∈ Grp)
6433, 52grpinvcl 18970 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝑑𝐵) → (𝐼𝑑) ∈ 𝐵)
6563, 55, 64syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → (𝐼𝑑) ∈ 𝐵)
6640, 17syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → (𝑌 + 𝑍) ∈ 𝑉)
678, 34, 32, 33, 10, 60, 65, 66ellspsni 20958 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → ((𝐼𝑑) · (𝑌 + 𝑍)) ∈ (𝑁‘{(𝑌 + 𝑍)}))
6859, 67eqeltrd 2834 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)}))
69683exp 1119 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) → ((𝑑𝐵𝑒𝐵) → (𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)}))))
7069rexlimdvv 3197 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))
71703exp 1119 . . . . . 6 (𝜑 → ((𝑎𝐵𝑏𝐵) → (𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))))
7271rexlimdvv 3197 . . . . 5 (𝜑 → (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)}))))
7372impd 410 . . . 4 (𝜑 → ((∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))
7438, 73sylbid 240 . . 3 (𝜑 → (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))
7574ssrdv 3964 . 2 (𝜑 → (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ⊆ (𝑁‘{(𝑌 + 𝑍)}))
7630, 75eqssd 3976 1 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  cdif 3923  cin 3925  wss 3926  {csn 4601  {cpr 4603  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  Grpcgrp 18916  invgcminusg 18917  -gcsg 18918  LSSumclsm 19615  Abelcabl 19762  Ringcrg 20193  LModclmod 20817  LSpanclspn 20928  LVecclvec 21060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cntz 19300  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lvec 21061
This theorem is referenced by:  baerlem5b  41734
  Copyright terms: Public domain W3C validator