Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5blem2 Structured version   Visualization version   GIF version

Theorem baerlem5blem2 37522
Description: Lemma for baerlem5b 37525. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
baerlem5blem2 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))

Proof of Theorem baerlem5blem2
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 baerlem3.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 19319 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 baerlem3.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
54eldifad 3735 . . . 4 (𝜑𝑌𝑉)
6 baerlem3.z . . . . 5 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
76eldifad 3735 . . . 4 (𝜑𝑍𝑉)
8 baerlem3.v . . . . 5 𝑉 = (Base‘𝑊)
9 baerlem3.p . . . . 5 + = (+g𝑊)
10 baerlem3.n . . . . 5 𝑁 = (LSpan‘𝑊)
11 baerlem3.s . . . . 5 = (LSSum‘𝑊)
128, 9, 10, 11lspsntri 19310 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
133, 5, 7, 12syl3anc 1476 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
14 baerlem3.m . . . . . 6 = (-g𝑊)
15 baerlem3.x . . . . . . 7 (𝜑𝑋𝑉)
168, 9lmodvacl 19087 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
173, 5, 7, 16syl3anc 1476 . . . . . . 7 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
188, 14lmodvsubcl 19118 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
193, 15, 17, 18syl3anc 1476 . . . . . 6 (𝜑 → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
208, 14, 10, 3, 19, 15lspsnsub 19220 . . . . 5 (𝜑 → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) = (𝑁‘{(𝑋 (𝑋 (𝑌 + 𝑍)))}))
21 lmodabl 19120 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
223, 21syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Abel)
238, 14, 22, 15, 17ablnncan 18433 . . . . . . 7 (𝜑 → (𝑋 (𝑋 (𝑌 + 𝑍))) = (𝑌 + 𝑍))
2423sneqd 4328 . . . . . 6 (𝜑 → {(𝑋 (𝑋 (𝑌 + 𝑍)))} = {(𝑌 + 𝑍)})
2524fveq2d 6336 . . . . 5 (𝜑 → (𝑁‘{(𝑋 (𝑋 (𝑌 + 𝑍)))}) = (𝑁‘{(𝑌 + 𝑍)}))
2620, 25eqtrd 2805 . . . 4 (𝜑 → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) = (𝑁‘{(𝑌 + 𝑍)}))
278, 14, 11, 10lspsntrim 19311 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 (𝑌 + 𝑍)) ∈ 𝑉𝑋𝑉) → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) ⊆ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})))
283, 19, 15, 27syl3anc 1476 . . . 4 (𝜑 → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) ⊆ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})))
2926, 28eqsstr3d 3789 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})))
3013, 29ssind 3985 . 2 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))
31 elin 3947 . . . . 5 (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ↔ (𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))
32 baerlem3.r . . . . . . 7 𝑅 = (Scalar‘𝑊)
33 baerlem3.b . . . . . . 7 𝐵 = (Base‘𝑅)
34 baerlem3.t . . . . . . 7 · = ( ·𝑠𝑊)
358, 9, 32, 33, 34, 11, 10, 3, 5, 7lsmspsn 19297 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ↔ ∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))))
368, 9, 32, 33, 34, 11, 10, 3, 19, 15lsmspsn 19297 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})) ↔ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))))
3735, 36anbi12d 608 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)))))
3831, 37syl5bb 272 . . . 4 (𝜑 → (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)))))
39 baerlem3.o . . . . . . . . . . 11 0 = (0g𝑊)
40 simp11 1245 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝜑)
4140, 1syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑊 ∈ LVec)
4240, 15syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑋𝑉)
43 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
4440, 43syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
45 baerlem3.d . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4640, 45syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4740, 4syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4840, 6syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
49 baerlem3.a . . . . . . . . . . 11 = (+g𝑅)
50 baerlem3.l . . . . . . . . . . 11 𝐿 = (-g𝑅)
51 baerlem3.q . . . . . . . . . . 11 𝑄 = (0g𝑅)
52 baerlem3.i . . . . . . . . . . 11 𝐼 = (invg𝑅)
53 simp12l 1370 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑎𝐵)
54 simp12r 1371 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑏𝐵)
55 simp2l 1241 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑑𝐵)
56 simp2r 1242 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑒𝐵)
57 simp13 1247 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)))
58 simp3 1132 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)))
598, 14, 39, 11, 10, 41, 42, 44, 46, 47, 48, 9, 34, 32, 33, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58baerlem5blem1 37519 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 = ((𝐼𝑑) · (𝑌 + 𝑍)))
6040, 3syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑊 ∈ LMod)
6132lmodring 19081 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
62 ringgrp 18760 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
6340, 3, 61, 624syl 19 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑅 ∈ Grp)
6433, 52grpinvcl 17675 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝑑𝐵) → (𝐼𝑑) ∈ 𝐵)
6563, 55, 64syl2anc 565 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → (𝐼𝑑) ∈ 𝐵)
6640, 17syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → (𝑌 + 𝑍) ∈ 𝑉)
678, 34, 32, 33, 10, 60, 65, 66lspsneli 19214 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → ((𝐼𝑑) · (𝑌 + 𝑍)) ∈ (𝑁‘{(𝑌 + 𝑍)}))
6859, 67eqeltrd 2850 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)}))
69683exp 1112 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) → ((𝑑𝐵𝑒𝐵) → (𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)}))))
7069rexlimdvv 3185 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))
71703exp 1112 . . . . . 6 (𝜑 → ((𝑎𝐵𝑏𝐵) → (𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))))
7271rexlimdvv 3185 . . . . 5 (𝜑 → (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)}))))
7372impd 396 . . . 4 (𝜑 → ((∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))
7438, 73sylbid 230 . . 3 (𝜑 → (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))
7574ssrdv 3758 . 2 (𝜑 → (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ⊆ (𝑁‘{(𝑌 + 𝑍)}))
7630, 75eqssd 3769 1 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  cdif 3720  cin 3722  wss 3723  {csn 4316  {cpr 4318  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  Scalarcsca 16152   ·𝑠 cvsca 16153  0gc0g 16308  Grpcgrp 17630  invgcminusg 17631  -gcsg 17632  LSSumclsm 18256  Abelcabl 18401  Ringcrg 18755  LModclmod 19073  LSpanclspn 19184  LVecclvec 19315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-cntz 17957  df-lsm 18258  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-drng 18959  df-lmod 19075  df-lss 19143  df-lsp 19185  df-lvec 19316
This theorem is referenced by:  baerlem5b  37525
  Copyright terms: Public domain W3C validator