Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5blem2 Structured version   Visualization version   GIF version

Theorem baerlem5blem2 39281
Description: Lemma for baerlem5b 39284. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
baerlem5blem2 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))

Proof of Theorem baerlem5blem2
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 baerlem3.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 19939 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 baerlem3.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
54eldifad 3871 . . . 4 (𝜑𝑌𝑉)
6 baerlem3.z . . . . 5 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
76eldifad 3871 . . . 4 (𝜑𝑍𝑉)
8 baerlem3.v . . . . 5 𝑉 = (Base‘𝑊)
9 baerlem3.p . . . . 5 + = (+g𝑊)
10 baerlem3.n . . . . 5 𝑁 = (LSpan‘𝑊)
11 baerlem3.s . . . . 5 = (LSSum‘𝑊)
128, 9, 10, 11lspsntri 19930 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
133, 5, 7, 12syl3anc 1369 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
14 baerlem3.m . . . . . 6 = (-g𝑊)
15 baerlem3.x . . . . . . 7 (𝜑𝑋𝑉)
168, 9lmodvacl 19709 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
173, 5, 7, 16syl3anc 1369 . . . . . . 7 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
188, 14lmodvsubcl 19740 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
193, 15, 17, 18syl3anc 1369 . . . . . 6 (𝜑 → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
208, 14, 10, 3, 19, 15lspsnsub 19840 . . . . 5 (𝜑 → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) = (𝑁‘{(𝑋 (𝑋 (𝑌 + 𝑍)))}))
21 lmodabl 19742 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
223, 21syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Abel)
238, 14, 22, 15, 17ablnncan 19002 . . . . . . 7 (𝜑 → (𝑋 (𝑋 (𝑌 + 𝑍))) = (𝑌 + 𝑍))
2423sneqd 4535 . . . . . 6 (𝜑 → {(𝑋 (𝑋 (𝑌 + 𝑍)))} = {(𝑌 + 𝑍)})
2524fveq2d 6663 . . . . 5 (𝜑 → (𝑁‘{(𝑋 (𝑋 (𝑌 + 𝑍)))}) = (𝑁‘{(𝑌 + 𝑍)}))
2620, 25eqtrd 2794 . . . 4 (𝜑 → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) = (𝑁‘{(𝑌 + 𝑍)}))
278, 14, 11, 10lspsntrim 19931 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 (𝑌 + 𝑍)) ∈ 𝑉𝑋𝑉) → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) ⊆ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})))
283, 19, 15, 27syl3anc 1369 . . . 4 (𝜑 → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) ⊆ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})))
2926, 28eqsstrrd 3932 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})))
3013, 29ssind 4138 . 2 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))
31 elin 3875 . . . . 5 (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ↔ (𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))
32 baerlem3.r . . . . . . 7 𝑅 = (Scalar‘𝑊)
33 baerlem3.b . . . . . . 7 𝐵 = (Base‘𝑅)
34 baerlem3.t . . . . . . 7 · = ( ·𝑠𝑊)
358, 9, 32, 33, 34, 11, 10, 3, 5, 7lsmspsn 19917 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ↔ ∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))))
368, 9, 32, 33, 34, 11, 10, 3, 19, 15lsmspsn 19917 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})) ↔ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))))
3735, 36anbi12d 634 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)))))
3831, 37syl5bb 286 . . . 4 (𝜑 → (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)))))
39 baerlem3.o . . . . . . . . . . 11 0 = (0g𝑊)
40 simp11 1201 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝜑)
4140, 1syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑊 ∈ LVec)
4240, 15syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑋𝑉)
43 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
4440, 43syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
45 baerlem3.d . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4640, 45syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4740, 4syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4840, 6syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
49 baerlem3.a . . . . . . . . . . 11 = (+g𝑅)
50 baerlem3.l . . . . . . . . . . 11 𝐿 = (-g𝑅)
51 baerlem3.q . . . . . . . . . . 11 𝑄 = (0g𝑅)
52 baerlem3.i . . . . . . . . . . 11 𝐼 = (invg𝑅)
53 simp12l 1284 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑎𝐵)
54 simp12r 1285 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑏𝐵)
55 simp2l 1197 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑑𝐵)
56 simp2r 1198 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑒𝐵)
57 simp13 1203 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)))
58 simp3 1136 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)))
598, 14, 39, 11, 10, 41, 42, 44, 46, 47, 48, 9, 34, 32, 33, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58baerlem5blem1 39278 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 = ((𝐼𝑑) · (𝑌 + 𝑍)))
6040, 3syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑊 ∈ LMod)
6132lmodring 19703 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
62 ringgrp 19363 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
6340, 3, 61, 624syl 19 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑅 ∈ Grp)
6433, 52grpinvcl 18211 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝑑𝐵) → (𝐼𝑑) ∈ 𝐵)
6563, 55, 64syl2anc 588 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → (𝐼𝑑) ∈ 𝐵)
6640, 17syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → (𝑌 + 𝑍) ∈ 𝑉)
678, 34, 32, 33, 10, 60, 65, 66lspsneli 19834 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → ((𝐼𝑑) · (𝑌 + 𝑍)) ∈ (𝑁‘{(𝑌 + 𝑍)}))
6859, 67eqeltrd 2853 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)}))
69683exp 1117 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) → ((𝑑𝐵𝑒𝐵) → (𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)}))))
7069rexlimdvv 3218 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))
71703exp 1117 . . . . . 6 (𝜑 → ((𝑎𝐵𝑏𝐵) → (𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))))
7271rexlimdvv 3218 . . . . 5 (𝜑 → (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)}))))
7372impd 415 . . . 4 (𝜑 → ((∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))
7438, 73sylbid 243 . . 3 (𝜑 → (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))
7574ssrdv 3899 . 2 (𝜑 → (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ⊆ (𝑁‘{(𝑌 + 𝑍)}))
7630, 75eqssd 3910 1 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wrex 3072  cdif 3856  cin 3858  wss 3859  {csn 4523  {cpr 4525  cfv 6336  (class class class)co 7151  Basecbs 16534  +gcplusg 16616  Scalarcsca 16619   ·𝑠 cvsca 16620  0gc0g 16764  Grpcgrp 18162  invgcminusg 18163  -gcsg 18164  LSSumclsm 18819  Abelcabl 18967  Ringcrg 19358  LModclmod 19695  LSpanclspn 19804  LVecclvec 19935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-tpos 7903  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-2 11730  df-3 11731  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-mulr 16630  df-0g 16766  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-submnd 18016  df-grp 18165  df-minusg 18166  df-sbg 18167  df-subg 18336  df-cntz 18507  df-lsm 18821  df-cmn 18968  df-abl 18969  df-mgp 19301  df-ur 19313  df-ring 19360  df-oppr 19437  df-dvdsr 19455  df-unit 19456  df-invr 19486  df-drng 19565  df-lmod 19697  df-lss 19765  df-lsp 19805  df-lvec 19936
This theorem is referenced by:  baerlem5b  39284
  Copyright terms: Public domain W3C validator