Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5blem2 Structured version   Visualization version   GIF version

Theorem baerlem5blem2 38863
Description: Lemma for baerlem5b 38866. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
baerlem5blem2 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))

Proof of Theorem baerlem5blem2
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 baerlem3.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 19878 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 baerlem3.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
54eldifad 3948 . . . 4 (𝜑𝑌𝑉)
6 baerlem3.z . . . . 5 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
76eldifad 3948 . . . 4 (𝜑𝑍𝑉)
8 baerlem3.v . . . . 5 𝑉 = (Base‘𝑊)
9 baerlem3.p . . . . 5 + = (+g𝑊)
10 baerlem3.n . . . . 5 𝑁 = (LSpan‘𝑊)
11 baerlem3.s . . . . 5 = (LSSum‘𝑊)
128, 9, 10, 11lspsntri 19869 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
133, 5, 7, 12syl3anc 1367 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
14 baerlem3.m . . . . . 6 = (-g𝑊)
15 baerlem3.x . . . . . . 7 (𝜑𝑋𝑉)
168, 9lmodvacl 19648 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
173, 5, 7, 16syl3anc 1367 . . . . . . 7 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
188, 14lmodvsubcl 19679 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
193, 15, 17, 18syl3anc 1367 . . . . . 6 (𝜑 → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
208, 14, 10, 3, 19, 15lspsnsub 19779 . . . . 5 (𝜑 → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) = (𝑁‘{(𝑋 (𝑋 (𝑌 + 𝑍)))}))
21 lmodabl 19681 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
223, 21syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Abel)
238, 14, 22, 15, 17ablnncan 18941 . . . . . . 7 (𝜑 → (𝑋 (𝑋 (𝑌 + 𝑍))) = (𝑌 + 𝑍))
2423sneqd 4579 . . . . . 6 (𝜑 → {(𝑋 (𝑋 (𝑌 + 𝑍)))} = {(𝑌 + 𝑍)})
2524fveq2d 6674 . . . . 5 (𝜑 → (𝑁‘{(𝑋 (𝑋 (𝑌 + 𝑍)))}) = (𝑁‘{(𝑌 + 𝑍)}))
2620, 25eqtrd 2856 . . . 4 (𝜑 → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) = (𝑁‘{(𝑌 + 𝑍)}))
278, 14, 11, 10lspsntrim 19870 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 (𝑌 + 𝑍)) ∈ 𝑉𝑋𝑉) → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) ⊆ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})))
283, 19, 15, 27syl3anc 1367 . . . 4 (𝜑 → (𝑁‘{((𝑋 (𝑌 + 𝑍)) 𝑋)}) ⊆ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})))
2926, 28eqsstrrd 4006 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})))
3013, 29ssind 4209 . 2 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))
31 elin 4169 . . . . 5 (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ↔ (𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))
32 baerlem3.r . . . . . . 7 𝑅 = (Scalar‘𝑊)
33 baerlem3.b . . . . . . 7 𝐵 = (Base‘𝑅)
34 baerlem3.t . . . . . . 7 · = ( ·𝑠𝑊)
358, 9, 32, 33, 34, 11, 10, 3, 5, 7lsmspsn 19856 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ↔ ∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))))
368, 9, 32, 33, 34, 11, 10, 3, 19, 15lsmspsn 19856 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋})) ↔ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))))
3735, 36anbi12d 632 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)))))
3831, 37syl5bb 285 . . . 4 (𝜑 → (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)))))
39 baerlem3.o . . . . . . . . . . 11 0 = (0g𝑊)
40 simp11 1199 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝜑)
4140, 1syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑊 ∈ LVec)
4240, 15syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑋𝑉)
43 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
4440, 43syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
45 baerlem3.d . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4640, 45syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4740, 4syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4840, 6syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
49 baerlem3.a . . . . . . . . . . 11 = (+g𝑅)
50 baerlem3.l . . . . . . . . . . 11 𝐿 = (-g𝑅)
51 baerlem3.q . . . . . . . . . . 11 𝑄 = (0g𝑅)
52 baerlem3.i . . . . . . . . . . 11 𝐼 = (invg𝑅)
53 simp12l 1282 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑎𝐵)
54 simp12r 1283 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑏𝐵)
55 simp2l 1195 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑑𝐵)
56 simp2r 1196 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑒𝐵)
57 simp13 1201 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)))
58 simp3 1134 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)))
598, 14, 39, 11, 10, 41, 42, 44, 46, 47, 48, 9, 34, 32, 33, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58baerlem5blem1 38860 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 = ((𝐼𝑑) · (𝑌 + 𝑍)))
6040, 3syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑊 ∈ LMod)
6132lmodring 19642 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
62 ringgrp 19302 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
6340, 3, 61, 624syl 19 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑅 ∈ Grp)
6433, 52grpinvcl 18151 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝑑𝐵) → (𝐼𝑑) ∈ 𝐵)
6563, 55, 64syl2anc 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → (𝐼𝑑) ∈ 𝐵)
6640, 17syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → (𝑌 + 𝑍) ∈ 𝑉)
678, 34, 32, 33, 10, 60, 65, 66lspsneli 19773 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → ((𝐼𝑑) · (𝑌 + 𝑍)) ∈ (𝑁‘{(𝑌 + 𝑍)}))
6859, 67eqeltrd 2913 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)}))
69683exp 1115 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) → ((𝑑𝐵𝑒𝐵) → (𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)}))))
7069rexlimdvv 3293 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))
71703exp 1115 . . . . . 6 (𝜑 → ((𝑎𝐵𝑏𝐵) → (𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))))
7271rexlimdvv 3293 . . . . 5 (𝜑 → (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋)) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)}))))
7372impd 413 . . . 4 (𝜑 → ((∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 (𝑌 + 𝑍))) + (𝑒 · 𝑋))) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))
7438, 73sylbid 242 . . 3 (𝜑 → (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) → 𝑗 ∈ (𝑁‘{(𝑌 + 𝑍)})))
7574ssrdv 3973 . 2 (𝜑 → (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))) ⊆ (𝑁‘{(𝑌 + 𝑍)}))
7630, 75eqssd 3984 1 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))}) (𝑁‘{𝑋}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139  cdif 3933  cin 3935  wss 3936  {csn 4567  {cpr 4569  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  Grpcgrp 18103  invgcminusg 18104  -gcsg 18105  LSSumclsm 18759  Abelcabl 18907  Ringcrg 19297  LModclmod 19634  LSpanclspn 19743  LVecclvec 19874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-cntz 18447  df-lsm 18761  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-drng 19504  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lvec 19875
This theorem is referenced by:  baerlem5b  38866
  Copyright terms: Public domain W3C validator