Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5alem2 Structured version   Visualization version   GIF version

Theorem baerlem5alem2 39652
Description: Lemma for baerlem5a 39655. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
baerlem5alem2 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))

Proof of Theorem baerlem5alem2
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 baerlem3.v . . . . . . 7 𝑉 = (Base‘𝑊)
2 baerlem3.p . . . . . . 7 + = (+g𝑊)
3 baerlem3.m . . . . . . 7 = (-g𝑊)
4 baerlem3.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
5 lveclmod 20283 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
7 lmodabl 20085 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
86, 7syl 17 . . . . . . 7 (𝜑𝑊 ∈ Abel)
9 baerlem3.x . . . . . . 7 (𝜑𝑋𝑉)
10 baerlem3.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1110eldifad 3895 . . . . . . 7 (𝜑𝑌𝑉)
12 baerlem3.z . . . . . . . 8 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1312eldifad 3895 . . . . . . 7 (𝜑𝑍𝑉)
141, 2, 3, 8, 9, 11, 13ablsubsub4 19335 . . . . . 6 (𝜑 → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 + 𝑍)))
1514sneqd 4570 . . . . 5 (𝜑 → {((𝑋 𝑌) 𝑍)} = {(𝑋 (𝑌 + 𝑍))})
1615fveq2d 6760 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑌) 𝑍)}) = (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
171, 3lmodvsubcl 20083 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
186, 9, 11, 17syl3anc 1369 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
19 baerlem3.s . . . . . 6 = (LSSum‘𝑊)
20 baerlem3.n . . . . . 6 𝑁 = (LSpan‘𝑊)
211, 3, 19, 20lspsntrim 20275 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉𝑍𝑉) → (𝑁‘{((𝑋 𝑌) 𝑍)}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
226, 18, 13, 21syl3anc 1369 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑌) 𝑍)}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
2316, 22eqsstrrd 3956 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
241, 3, 8, 9, 13, 11ablsub32 19338 . . . . . . 7 (𝜑 → ((𝑋 𝑍) 𝑌) = ((𝑋 𝑌) 𝑍))
2524, 14eqtrd 2778 . . . . . 6 (𝜑 → ((𝑋 𝑍) 𝑌) = (𝑋 (𝑌 + 𝑍)))
2625sneqd 4570 . . . . 5 (𝜑 → {((𝑋 𝑍) 𝑌)} = {(𝑋 (𝑌 + 𝑍))})
2726fveq2d 6760 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑍) 𝑌)}) = (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
281, 3lmodvsubcl 20083 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
296, 9, 13, 28syl3anc 1369 . . . . 5 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
301, 3, 19, 20lspsntrim 20275 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 𝑍) ∈ 𝑉𝑌𝑉) → (𝑁‘{((𝑋 𝑍) 𝑌)}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
316, 29, 11, 30syl3anc 1369 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑍) 𝑌)}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
3227, 31eqsstrrd 3956 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
3323, 32ssind 4163 . 2 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
34 elin 3899 . . . . 5 (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
35 baerlem3.r . . . . . . 7 𝑅 = (Scalar‘𝑊)
36 baerlem3.b . . . . . . 7 𝐵 = (Base‘𝑅)
37 baerlem3.t . . . . . . 7 · = ( ·𝑠𝑊)
381, 2, 35, 36, 37, 19, 20, 6, 18, 13lsmspsn 20261 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ↔ ∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))))
391, 2, 35, 36, 37, 19, 20, 6, 29, 11lsmspsn 20261 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})) ↔ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))))
4038, 39anbi12d 630 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))))
4134, 40syl5bb 282 . . . 4 (𝜑 → (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))))
42 baerlem3.o . . . . . . . . . . 11 0 = (0g𝑊)
43 simp11 1201 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝜑)
4443, 4syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑊 ∈ LVec)
4543, 9syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑋𝑉)
46 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
4743, 46syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
48 baerlem3.d . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4943, 48syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
5043, 10syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
5143, 12syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
52 baerlem3.a . . . . . . . . . . 11 = (+g𝑅)
53 baerlem3.l . . . . . . . . . . 11 𝐿 = (-g𝑅)
54 baerlem3.q . . . . . . . . . . 11 𝑄 = (0g𝑅)
55 baerlem3.i . . . . . . . . . . 11 𝐼 = (invg𝑅)
56 simp12l 1284 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑎𝐵)
57 simp12r 1285 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑏𝐵)
58 simp2l 1197 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑑𝐵)
59 simp2r 1198 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑒𝐵)
60 simp13 1203 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
61 simp3 1136 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
621, 3, 42, 19, 20, 44, 45, 47, 49, 50, 51, 2, 37, 35, 36, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61baerlem5alem1 39649 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))
6343, 6syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑊 ∈ LMod)
641, 2lmodvacl 20052 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
656, 11, 13, 64syl3anc 1369 . . . . . . . . . . . . 13 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
661, 3lmodvsubcl 20083 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
676, 9, 65, 66syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
6843, 67syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
691, 37, 35, 36, 20, 63, 56, 68lspsneli 20178 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑎 · (𝑋 (𝑌 + 𝑍))) ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
7062, 69eqeltrd 2839 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
71703exp 1117 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) → ((𝑑𝐵𝑒𝐵) → (𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))))
7271rexlimdvv 3221 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
73723exp 1117 . . . . . 6 (𝜑 → ((𝑎𝐵𝑏𝐵) → (𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))))
7473rexlimdvv 3221 . . . . 5 (𝜑 → (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))))
7574impd 410 . . . 4 (𝜑 → ((∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
7641, 75sylbid 239 . . 3 (𝜑 → (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
7776ssrdv 3923 . 2 (𝜑 → (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ⊆ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
7833, 77eqssd 3934 1 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cdif 3880  cin 3882  wss 3883  {csn 4558  {cpr 4560  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  invgcminusg 18493  -gcsg 18494  LSSumclsm 19154  Abelcabl 19302  LModclmod 20038  LSpanclspn 20148  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280
This theorem is referenced by:  baerlem5a  39655
  Copyright terms: Public domain W3C validator