Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5alem2 Structured version   Visualization version   GIF version

Theorem baerlem5alem2 37521
Description: Lemma for baerlem5a 37524. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
baerlem5alem2 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))

Proof of Theorem baerlem5alem2
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 baerlem3.v . . . . . . 7 𝑉 = (Base‘𝑊)
2 baerlem3.p . . . . . . 7 + = (+g𝑊)
3 baerlem3.m . . . . . . 7 = (-g𝑊)
4 baerlem3.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
5 lveclmod 19319 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
7 lmodabl 19120 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
86, 7syl 17 . . . . . . 7 (𝜑𝑊 ∈ Abel)
9 baerlem3.x . . . . . . 7 (𝜑𝑋𝑉)
10 baerlem3.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1110eldifad 3735 . . . . . . 7 (𝜑𝑌𝑉)
12 baerlem3.z . . . . . . . 8 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1312eldifad 3735 . . . . . . 7 (𝜑𝑍𝑉)
141, 2, 3, 8, 9, 11, 13ablsubsub4 18431 . . . . . 6 (𝜑 → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 + 𝑍)))
1514sneqd 4328 . . . . 5 (𝜑 → {((𝑋 𝑌) 𝑍)} = {(𝑋 (𝑌 + 𝑍))})
1615fveq2d 6336 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑌) 𝑍)}) = (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
171, 3lmodvsubcl 19118 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
186, 9, 11, 17syl3anc 1476 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
19 baerlem3.s . . . . . 6 = (LSSum‘𝑊)
20 baerlem3.n . . . . . 6 𝑁 = (LSpan‘𝑊)
211, 3, 19, 20lspsntrim 19311 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉𝑍𝑉) → (𝑁‘{((𝑋 𝑌) 𝑍)}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
226, 18, 13, 21syl3anc 1476 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑌) 𝑍)}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
2316, 22eqsstr3d 3789 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
241, 3, 8, 9, 13, 11ablsub32 18434 . . . . . . 7 (𝜑 → ((𝑋 𝑍) 𝑌) = ((𝑋 𝑌) 𝑍))
2524, 14eqtrd 2805 . . . . . 6 (𝜑 → ((𝑋 𝑍) 𝑌) = (𝑋 (𝑌 + 𝑍)))
2625sneqd 4328 . . . . 5 (𝜑 → {((𝑋 𝑍) 𝑌)} = {(𝑋 (𝑌 + 𝑍))})
2726fveq2d 6336 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑍) 𝑌)}) = (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
281, 3lmodvsubcl 19118 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
296, 9, 13, 28syl3anc 1476 . . . . 5 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
301, 3, 19, 20lspsntrim 19311 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 𝑍) ∈ 𝑉𝑌𝑉) → (𝑁‘{((𝑋 𝑍) 𝑌)}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
316, 29, 11, 30syl3anc 1476 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑍) 𝑌)}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
3227, 31eqsstr3d 3789 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
3323, 32ssind 3985 . 2 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
34 elin 3947 . . . . 5 (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
35 baerlem3.r . . . . . . 7 𝑅 = (Scalar‘𝑊)
36 baerlem3.b . . . . . . 7 𝐵 = (Base‘𝑅)
37 baerlem3.t . . . . . . 7 · = ( ·𝑠𝑊)
381, 2, 35, 36, 37, 19, 20, 6, 18, 13lsmspsn 19297 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ↔ ∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))))
391, 2, 35, 36, 37, 19, 20, 6, 29, 11lsmspsn 19297 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})) ↔ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))))
4038, 39anbi12d 608 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))))
4134, 40syl5bb 272 . . . 4 (𝜑 → (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))))
42 baerlem3.o . . . . . . . . . . 11 0 = (0g𝑊)
43 simp11 1245 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝜑)
4443, 4syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑊 ∈ LVec)
4543, 9syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑋𝑉)
46 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
4743, 46syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
48 baerlem3.d . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4943, 48syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
5043, 10syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
5143, 12syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
52 baerlem3.a . . . . . . . . . . 11 = (+g𝑅)
53 baerlem3.l . . . . . . . . . . 11 𝐿 = (-g𝑅)
54 baerlem3.q . . . . . . . . . . 11 𝑄 = (0g𝑅)
55 baerlem3.i . . . . . . . . . . 11 𝐼 = (invg𝑅)
56 simp12l 1370 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑎𝐵)
57 simp12r 1371 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑏𝐵)
58 simp2l 1241 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑑𝐵)
59 simp2r 1242 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑒𝐵)
60 simp13 1247 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
61 simp3 1132 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
621, 3, 42, 19, 20, 44, 45, 47, 49, 50, 51, 2, 37, 35, 36, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61baerlem5alem1 37518 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))
6343, 6syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑊 ∈ LMod)
641, 2lmodvacl 19087 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
656, 11, 13, 64syl3anc 1476 . . . . . . . . . . . . 13 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
661, 3lmodvsubcl 19118 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
676, 9, 65, 66syl3anc 1476 . . . . . . . . . . . 12 (𝜑 → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
6843, 67syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
691, 37, 35, 36, 20, 63, 56, 68lspsneli 19214 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑎 · (𝑋 (𝑌 + 𝑍))) ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
7062, 69eqeltrd 2850 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
71703exp 1112 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) → ((𝑑𝐵𝑒𝐵) → (𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))))
7271rexlimdvv 3185 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
73723exp 1112 . . . . . 6 (𝜑 → ((𝑎𝐵𝑏𝐵) → (𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))))
7473rexlimdvv 3185 . . . . 5 (𝜑 → (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))))
7574impd 396 . . . 4 (𝜑 → ((∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
7641, 75sylbid 230 . . 3 (𝜑 → (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
7776ssrdv 3758 . 2 (𝜑 → (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ⊆ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
7833, 77eqssd 3769 1 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  cdif 3720  cin 3722  wss 3723  {csn 4316  {cpr 4318  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  Scalarcsca 16152   ·𝑠 cvsca 16153  0gc0g 16308  invgcminusg 17631  -gcsg 17632  LSSumclsm 18256  Abelcabl 18401  LModclmod 19073  LSpanclspn 19184  LVecclvec 19315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-cntz 17957  df-lsm 18258  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-drng 18959  df-lmod 19075  df-lss 19143  df-lsp 19185  df-lvec 19316
This theorem is referenced by:  baerlem5a  37524
  Copyright terms: Public domain W3C validator