Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5alem2 Structured version   Visualization version   GIF version

Theorem baerlem5alem2 38919
Description: Lemma for baerlem5a 38922. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
baerlem5alem2 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))

Proof of Theorem baerlem5alem2
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 baerlem3.v . . . . . . 7 𝑉 = (Base‘𝑊)
2 baerlem3.p . . . . . . 7 + = (+g𝑊)
3 baerlem3.m . . . . . . 7 = (-g𝑊)
4 baerlem3.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
5 lveclmod 19873 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
7 lmodabl 19676 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
86, 7syl 17 . . . . . . 7 (𝜑𝑊 ∈ Abel)
9 baerlem3.x . . . . . . 7 (𝜑𝑋𝑉)
10 baerlem3.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1110eldifad 3931 . . . . . . 7 (𝜑𝑌𝑉)
12 baerlem3.z . . . . . . . 8 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1312eldifad 3931 . . . . . . 7 (𝜑𝑍𝑉)
141, 2, 3, 8, 9, 11, 13ablsubsub4 18937 . . . . . 6 (𝜑 → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 + 𝑍)))
1514sneqd 4562 . . . . 5 (𝜑 → {((𝑋 𝑌) 𝑍)} = {(𝑋 (𝑌 + 𝑍))})
1615fveq2d 6663 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑌) 𝑍)}) = (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
171, 3lmodvsubcl 19674 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
186, 9, 11, 17syl3anc 1368 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
19 baerlem3.s . . . . . 6 = (LSSum‘𝑊)
20 baerlem3.n . . . . . 6 𝑁 = (LSpan‘𝑊)
211, 3, 19, 20lspsntrim 19865 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉𝑍𝑉) → (𝑁‘{((𝑋 𝑌) 𝑍)}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
226, 18, 13, 21syl3anc 1368 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑌) 𝑍)}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
2316, 22eqsstrrd 3992 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
241, 3, 8, 9, 13, 11ablsub32 18940 . . . . . . 7 (𝜑 → ((𝑋 𝑍) 𝑌) = ((𝑋 𝑌) 𝑍))
2524, 14eqtrd 2859 . . . . . 6 (𝜑 → ((𝑋 𝑍) 𝑌) = (𝑋 (𝑌 + 𝑍)))
2625sneqd 4562 . . . . 5 (𝜑 → {((𝑋 𝑍) 𝑌)} = {(𝑋 (𝑌 + 𝑍))})
2726fveq2d 6663 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑍) 𝑌)}) = (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
281, 3lmodvsubcl 19674 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
296, 9, 13, 28syl3anc 1368 . . . . 5 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
301, 3, 19, 20lspsntrim 19865 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 𝑍) ∈ 𝑉𝑌𝑉) → (𝑁‘{((𝑋 𝑍) 𝑌)}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
316, 29, 11, 30syl3anc 1368 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑍) 𝑌)}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
3227, 31eqsstrrd 3992 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
3323, 32ssind 4194 . 2 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
34 elin 3935 . . . . 5 (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
35 baerlem3.r . . . . . . 7 𝑅 = (Scalar‘𝑊)
36 baerlem3.b . . . . . . 7 𝐵 = (Base‘𝑅)
37 baerlem3.t . . . . . . 7 · = ( ·𝑠𝑊)
381, 2, 35, 36, 37, 19, 20, 6, 18, 13lsmspsn 19851 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ↔ ∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))))
391, 2, 35, 36, 37, 19, 20, 6, 29, 11lsmspsn 19851 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})) ↔ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))))
4038, 39anbi12d 633 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))))
4134, 40syl5bb 286 . . . 4 (𝜑 → (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))))
42 baerlem3.o . . . . . . . . . . 11 0 = (0g𝑊)
43 simp11 1200 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝜑)
4443, 4syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑊 ∈ LVec)
4543, 9syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑋𝑉)
46 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
4743, 46syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
48 baerlem3.d . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4943, 48syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
5043, 10syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
5143, 12syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
52 baerlem3.a . . . . . . . . . . 11 = (+g𝑅)
53 baerlem3.l . . . . . . . . . . 11 𝐿 = (-g𝑅)
54 baerlem3.q . . . . . . . . . . 11 𝑄 = (0g𝑅)
55 baerlem3.i . . . . . . . . . . 11 𝐼 = (invg𝑅)
56 simp12l 1283 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑎𝐵)
57 simp12r 1284 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑏𝐵)
58 simp2l 1196 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑑𝐵)
59 simp2r 1197 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑒𝐵)
60 simp13 1202 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
61 simp3 1135 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
621, 3, 42, 19, 20, 44, 45, 47, 49, 50, 51, 2, 37, 35, 36, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61baerlem5alem1 38916 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))
6343, 6syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑊 ∈ LMod)
641, 2lmodvacl 19643 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
656, 11, 13, 64syl3anc 1368 . . . . . . . . . . . . 13 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
661, 3lmodvsubcl 19674 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
676, 9, 65, 66syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
6843, 67syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
691, 37, 35, 36, 20, 63, 56, 68lspsneli 19768 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑎 · (𝑋 (𝑌 + 𝑍))) ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
7062, 69eqeltrd 2916 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
71703exp 1116 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) → ((𝑑𝐵𝑒𝐵) → (𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))))
7271rexlimdvv 3286 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
73723exp 1116 . . . . . 6 (𝜑 → ((𝑎𝐵𝑏𝐵) → (𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))))
7473rexlimdvv 3286 . . . . 5 (𝜑 → (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))))
7574impd 414 . . . 4 (𝜑 → ((∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
7641, 75sylbid 243 . . 3 (𝜑 → (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
7776ssrdv 3959 . 2 (𝜑 → (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ⊆ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
7833, 77eqssd 3970 1 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wrex 3134  cdif 3916  cin 3918  wss 3919  {csn 4550  {cpr 4552  cfv 6344  (class class class)co 7146  Basecbs 16481  +gcplusg 16563  Scalarcsca 16566   ·𝑠 cvsca 16567  0gc0g 16711  invgcminusg 18102  -gcsg 18103  LSSumclsm 18757  Abelcabl 18905  LModclmod 19629  LSpanclspn 19738  LVecclvec 19869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11695  df-3 11696  df-ndx 16484  df-slot 16485  df-base 16487  df-sets 16488  df-ress 16489  df-plusg 16576  df-mulr 16577  df-0g 16713  df-mgm 17850  df-sgrp 17899  df-mnd 17910  df-submnd 17955  df-grp 18104  df-minusg 18105  df-sbg 18106  df-subg 18274  df-cntz 18445  df-lsm 18759  df-cmn 18906  df-abl 18907  df-mgp 19238  df-ur 19250  df-ring 19297  df-oppr 19371  df-dvdsr 19389  df-unit 19390  df-invr 19420  df-drng 19499  df-lmod 19631  df-lss 19699  df-lsp 19739  df-lvec 19870
This theorem is referenced by:  baerlem5a  38922
  Copyright terms: Public domain W3C validator