Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem3lem2 Structured version   Visualization version   GIF version

Theorem baerlem3lem2 39006
Description: Lemma for baerlem3 39009. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
baerlem3lem2 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))))

Proof of Theorem baerlem3lem2
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 baerlem3.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 19871 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 baerlem3.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
54eldifad 3893 . . . 4 (𝜑𝑌𝑉)
6 baerlem3.z . . . . 5 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
76eldifad 3893 . . . 4 (𝜑𝑍𝑉)
8 baerlem3.v . . . . 5 𝑉 = (Base‘𝑊)
9 baerlem3.m . . . . 5 = (-g𝑊)
10 baerlem3.s . . . . 5 = (LSSum‘𝑊)
11 baerlem3.n . . . . 5 𝑁 = (LSpan‘𝑊)
128, 9, 10, 11lspsntrim 19863 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑁‘{(𝑌 𝑍)}) ⊆ ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
133, 5, 7, 12syl3anc 1368 . . 3 (𝜑 → (𝑁‘{(𝑌 𝑍)}) ⊆ ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
148, 9, 11, 3, 5, 7lspsnsub 19772 . . . . 5 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (𝑁‘{(𝑍 𝑌)}))
15 lmodabl 19674 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
163, 15syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Abel)
17 baerlem3.x . . . . . . . 8 (𝜑𝑋𝑉)
188, 9, 16, 17, 5, 7ablnnncan1 18937 . . . . . . 7 (𝜑 → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑍 𝑌))
1918sneqd 4537 . . . . . 6 (𝜑 → {((𝑋 𝑌) (𝑋 𝑍))} = {(𝑍 𝑌)})
2019fveq2d 6649 . . . . 5 (𝜑 → (𝑁‘{((𝑋 𝑌) (𝑋 𝑍))}) = (𝑁‘{(𝑍 𝑌)}))
2114, 20eqtr4d 2836 . . . 4 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (𝑁‘{((𝑋 𝑌) (𝑋 𝑍))}))
228, 9lmodvsubcl 19672 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
233, 17, 5, 22syl3anc 1368 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
248, 9lmodvsubcl 19672 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
253, 17, 7, 24syl3anc 1368 . . . . 5 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
268, 9, 10, 11lspsntrim 19863 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉 ∧ (𝑋 𝑍) ∈ 𝑉) → (𝑁‘{((𝑋 𝑌) (𝑋 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)})))
273, 23, 25, 26syl3anc 1368 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑌) (𝑋 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)})))
2821, 27eqsstrd 3953 . . 3 (𝜑 → (𝑁‘{(𝑌 𝑍)}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)})))
2913, 28ssind 4159 . 2 (𝜑 → (𝑁‘{(𝑌 𝑍)}) ⊆ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))))
30 elin 3897 . . . . 5 (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) ↔ (𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))))
31 baerlem3.p . . . . . . 7 + = (+g𝑊)
32 baerlem3.r . . . . . . 7 𝑅 = (Scalar‘𝑊)
33 baerlem3.b . . . . . . 7 𝐵 = (Base‘𝑅)
34 baerlem3.t . . . . . . 7 · = ( ·𝑠𝑊)
358, 31, 32, 33, 34, 10, 11, 3, 5, 7lsmspsn 19849 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ↔ ∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))))
368, 31, 32, 33, 34, 10, 11, 3, 23, 25lsmspsn 19849 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)})) ↔ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))))
3735, 36anbi12d 633 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))))))
3830, 37syl5bb 286 . . . 4 (𝜑 → (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))))))
39 baerlem3.o . . . . . . . . . . 11 0 = (0g𝑊)
40 simp11 1200 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝜑)
4140, 1syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑊 ∈ LVec)
4240, 17syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑋𝑉)
43 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
4440, 43syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
45 baerlem3.d . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4640, 45syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4740, 4syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4840, 6syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
49 baerlem3.a . . . . . . . . . . 11 = (+g𝑅)
50 baerlem3.l . . . . . . . . . . 11 𝐿 = (-g𝑅)
51 baerlem3.q . . . . . . . . . . 11 𝑄 = (0g𝑅)
52 baerlem3.i . . . . . . . . . . 11 𝐼 = (invg𝑅)
53 simp12l 1283 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑎𝐵)
54 simp12r 1284 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑏𝐵)
55 simp2l 1196 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑑𝐵)
56 simp2r 1197 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑒𝐵)
57 simp13 1202 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)))
58 simp3 1135 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))))
598, 9, 39, 10, 11, 41, 42, 44, 46, 47, 48, 31, 34, 32, 33, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58baerlem3lem1 39003 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 = (𝑎 · (𝑌 𝑍)))
6040, 3syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑊 ∈ LMod)
618, 9lmodvsubcl 19672 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 𝑍) ∈ 𝑉)
623, 5, 7, 61syl3anc 1368 . . . . . . . . . . . 12 (𝜑 → (𝑌 𝑍) ∈ 𝑉)
6340, 62syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → (𝑌 𝑍) ∈ 𝑉)
648, 34, 32, 33, 11, 60, 53, 63lspsneli 19766 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → (𝑎 · (𝑌 𝑍)) ∈ (𝑁‘{(𝑌 𝑍)}))
6559, 64eqeltrd 2890 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)}))
66653exp 1116 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) → ((𝑑𝐵𝑒𝐵) → (𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)}))))
6766rexlimdvv 3252 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍))) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)})))
68673exp 1116 . . . . . 6 (𝜑 → ((𝑎𝐵𝑏𝐵) → (𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)})))))
6968rexlimdvv 3252 . . . . 5 (𝜑 → (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)}))))
7069impd 414 . . . 4 (𝜑 → ((∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · 𝑌) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑌)) + (𝑒 · (𝑋 𝑍)))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)})))
7138, 70sylbid 243 . . 3 (𝜑 → (𝑗 ∈ (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) → 𝑗 ∈ (𝑁‘{(𝑌 𝑍)})))
7271ssrdv 3921 . 2 (𝜑 → (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))) ⊆ (𝑁‘{(𝑌 𝑍)}))
7329, 72eqssd 3932 1 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{(𝑋 𝑍)}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107  cdif 3878  cin 3880  wss 3881  {csn 4525  {cpr 4527  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  invgcminusg 18096  -gcsg 18097  LSSumclsm 18751  Abelcabl 18899  LModclmod 19627  LSpanclspn 19736  LVecclvec 19867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868
This theorem is referenced by:  baerlem3  39009
  Copyright terms: Public domain W3C validator