Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme16c Structured version   Visualization version   GIF version

Theorem cdleme16c 37486
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 2nd part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, s t f(s) f(t)=s t u. (Contributed by NM, 11-Oct-2012.)
Hypotheses
Ref Expression
cdleme12.l = (le‘𝐾)
cdleme12.j = (join‘𝐾)
cdleme12.m = (meet‘𝐾)
cdleme12.a 𝐴 = (Atoms‘𝐾)
cdleme12.h 𝐻 = (LHyp‘𝐾)
cdleme12.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme12.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme12.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
Assertion
Ref Expression
cdleme16c ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) = ((𝑆 𝑇) 𝑈))

Proof of Theorem cdleme16c
StepHypRef Expression
1 simp11l 1281 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝐾 ∈ HL)
2 simp11r 1282 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑊𝐻)
3 simp12l 1283 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑃𝐴)
4 simp13l 1285 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑄𝐴)
5 simp21 1203 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
6 cdleme12.l . . . . 5 = (le‘𝐾)
7 cdleme12.j . . . . 5 = (join‘𝐾)
8 cdleme12.m . . . . 5 = (meet‘𝐾)
9 cdleme12.a . . . . 5 𝐴 = (Atoms‘𝐾)
10 cdleme12.h . . . . 5 𝐻 = (LHyp‘𝐾)
11 cdleme12.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
12 cdleme12.f . . . . 5 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
136, 7, 8, 9, 10, 11, 12cdleme1 37433 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝑆 𝐹) = (𝑆 𝑈))
141, 2, 3, 4, 5, 13syl23anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑆 𝐹) = (𝑆 𝑈))
15 simp22 1204 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
16 cdleme12.g . . . . 5 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
176, 7, 8, 9, 10, 11, 16cdleme1 37433 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊))) → (𝑇 𝐺) = (𝑇 𝑈))
181, 2, 3, 4, 15, 17syl23anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑇 𝐺) = (𝑇 𝑈))
1914, 18oveq12d 7163 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝐹) (𝑇 𝐺)) = ((𝑆 𝑈) (𝑇 𝑈)))
20 simp21l 1287 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑆𝐴)
21 simp22l 1289 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑇𝐴)
22 simp11 1200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
23 simp12 1201 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
24 simp13 1202 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
25 simp23l 1291 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑃𝑄)
26 simp31 1206 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ¬ 𝑆 (𝑃 𝑄))
276, 7, 8, 9, 10, 11, 12cdleme3fa 37442 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐹𝐴)
2822, 23, 24, 5, 25, 26, 27syl132anc 1385 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝐹𝐴)
29 simp32 1207 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ¬ 𝑇 (𝑃 𝑄))
306, 7, 8, 9, 10, 11, 16cdleme3fa 37442 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑇 (𝑃 𝑄))) → 𝐺𝐴)
3122, 23, 24, 15, 25, 29, 30syl132anc 1385 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝐺𝐴)
327, 9hlatj4 36580 . . 3 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴) ∧ (𝐹𝐴𝐺𝐴)) → ((𝑆 𝑇) (𝐹 𝐺)) = ((𝑆 𝐹) (𝑇 𝐺)))
331, 20, 21, 28, 31, 32syl122anc 1376 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) = ((𝑆 𝐹) (𝑇 𝐺)))
34 simp12r 1284 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ¬ 𝑃 𝑊)
356, 7, 8, 9, 10, 11lhpat2 37251 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
361, 2, 3, 34, 4, 25, 35syl222anc 1383 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → 𝑈𝐴)
377, 9hlatjidm 36575 . . . . 5 ((𝐾 ∈ HL ∧ 𝑈𝐴) → (𝑈 𝑈) = 𝑈)
381, 36, 37syl2anc 587 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → (𝑈 𝑈) = 𝑈)
3938oveq2d 7161 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝑈 𝑈)) = ((𝑆 𝑇) 𝑈))
407, 9hlatj4 36580 . . . 4 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑈𝐴)) → ((𝑆 𝑇) (𝑈 𝑈)) = ((𝑆 𝑈) (𝑇 𝑈)))
411, 20, 21, 36, 36, 40syl122anc 1376 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝑈 𝑈)) = ((𝑆 𝑈) (𝑇 𝑈)))
4239, 41eqtr3d 2861 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) 𝑈) = ((𝑆 𝑈) (𝑇 𝑈)))
4319, 33, 423eqtr4d 2869 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑆𝑇)) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑈 (𝑆 𝑇))) → ((𝑆 𝑇) (𝐹 𝐺)) = ((𝑆 𝑇) 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014   class class class wbr 5052  cfv 6343  (class class class)co 7145  lecple 16568  joincjn 17550  meetcmee 17551  Atomscatm 36469  HLchlt 36556  LHypclh 37190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-op 4556  df-uni 4825  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7679  df-2nd 7680  df-proset 17534  df-poset 17552  df-plt 17564  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-p0 17645  df-p1 17646  df-lat 17652  df-clat 17714  df-oposet 36382  df-ol 36384  df-oml 36385  df-covers 36472  df-ats 36473  df-atl 36504  df-cvlat 36528  df-hlat 36557  df-lines 36707  df-psubsp 36709  df-pmap 36710  df-padd 37002  df-lhyp 37194
This theorem is referenced by:  cdleme16d  37487
  Copyright terms: Public domain W3C validator