Proof of Theorem cdlemd8
Step | Hyp | Ref
| Expression |
1 | | simp3r 1200 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → (𝐹‘𝑃) = 𝑃) |
2 | | simp11 1201 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | | simp12l 1284 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → 𝐹 ∈ 𝑇) |
4 | | simp2 1135 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
5 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
6 | | cdlemd4.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
7 | | cdlemd4.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
8 | | cdlemd4.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
9 | | cdlemd4.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
10 | 5, 6, 7, 8, 9 | ltrnideq 38116 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐹 = ( I ↾ (Base‘𝐾)) ↔ (𝐹‘𝑃) = 𝑃)) |
11 | 2, 3, 4, 10 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → (𝐹 = ( I ↾ (Base‘𝐾)) ↔ (𝐹‘𝑃) = 𝑃)) |
12 | 1, 11 | mpbird 256 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → 𝐹 = ( I ↾ (Base‘𝐾))) |
13 | 12 | fveq1d 6758 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → (𝐹‘𝑅) = (( I ↾ (Base‘𝐾))‘𝑅)) |
14 | | simp3l 1199 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → (𝐹‘𝑃) = (𝐺‘𝑃)) |
15 | 14, 1 | eqtr3d 2780 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → (𝐺‘𝑃) = 𝑃) |
16 | | simp12r 1285 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → 𝐺 ∈ 𝑇) |
17 | 5, 6, 7, 8, 9 | ltrnideq 38116 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝐺‘𝑃) = 𝑃)) |
18 | 2, 16, 4, 17 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝐺‘𝑃) = 𝑃)) |
19 | 15, 18 | mpbird 256 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → 𝐺 = ( I ↾ (Base‘𝐾))) |
20 | 19 | fveq1d 6758 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → (𝐺‘𝑅) = (( I ↾ (Base‘𝐾))‘𝑅)) |
21 | 13, 20 | eqtr4d 2781 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → (𝐹‘𝑅) = (𝐺‘𝑅)) |