Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd8 Structured version   Visualization version   GIF version

Theorem cdlemd8 38198
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
cdlemd4.l = (le‘𝐾)
cdlemd4.j = (join‘𝐾)
cdlemd4.a 𝐴 = (Atoms‘𝐾)
cdlemd4.h 𝐻 = (LHyp‘𝐾)
cdlemd4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemd8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑅) = (𝐺𝑅))

Proof of Theorem cdlemd8
StepHypRef Expression
1 simp3r 1200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑃) = 𝑃)
2 simp11 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp12l 1284 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → 𝐹𝑇)
4 simp2 1135 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 eqid 2739 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
6 cdlemd4.l . . . . . 6 = (le‘𝐾)
7 cdlemd4.a . . . . . 6 𝐴 = (Atoms‘𝐾)
8 cdlemd4.h . . . . . 6 𝐻 = (LHyp‘𝐾)
9 cdlemd4.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
105, 6, 7, 8, 9ltrnideq 38168 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ (Base‘𝐾)) ↔ (𝐹𝑃) = 𝑃))
112, 3, 4, 10syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐹 = ( I ↾ (Base‘𝐾)) ↔ (𝐹𝑃) = 𝑃))
121, 11mpbird 256 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → 𝐹 = ( I ↾ (Base‘𝐾)))
1312fveq1d 6770 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑅) = (( I ↾ (Base‘𝐾))‘𝑅))
14 simp3l 1199 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑃) = (𝐺𝑃))
1514, 1eqtr3d 2781 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐺𝑃) = 𝑃)
16 simp12r 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → 𝐺𝑇)
175, 6, 7, 8, 9ltrnideq 38168 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝐺𝑃) = 𝑃))
182, 16, 4, 17syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐺 = ( I ↾ (Base‘𝐾)) ↔ (𝐺𝑃) = 𝑃))
1915, 18mpbird 256 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → 𝐺 = ( I ↾ (Base‘𝐾)))
2019fveq1d 6770 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐺𝑅) = (( I ↾ (Base‘𝐾))‘𝑅))
2113, 20eqtr4d 2782 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑅𝐴) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐹𝑃) = (𝐺𝑃) ∧ (𝐹𝑃) = 𝑃)) → (𝐹𝑅) = (𝐺𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109   class class class wbr 5078   I cid 5487  cres 5590  cfv 6430  Basecbs 16893  lecple 16950  joincjn 18010  Atomscatm 37256  HLchlt 37343  LHypclh 37977  LTrncltrn 38094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8591  df-proset 17994  df-poset 18012  df-plt 18029  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-p1 18125  df-lat 18131  df-clat 18198  df-oposet 37169  df-ol 37171  df-oml 37172  df-covers 37259  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344  df-lhyp 37981  df-laut 37982  df-ldil 38097  df-ltrn 38098  df-trl 38152
This theorem is referenced by:  cdlemd9  38199
  Copyright terms: Public domain W3C validator