Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme23b Structured version   Visualization version   GIF version

Theorem cdleme23b 37017
 Description: Part of proof of Lemma E in [Crawley] p. 113, 4th paragraph, 6th line on p. 115. (Contributed by NM, 8-Dec-2012.)
Hypotheses
Ref Expression
cdleme23.b 𝐵 = (Base‘𝐾)
cdleme23.l = (le‘𝐾)
cdleme23.j = (join‘𝐾)
cdleme23.m = (meet‘𝐾)
cdleme23.a 𝐴 = (Atoms‘𝐾)
cdleme23.h 𝐻 = (LHyp‘𝐾)
cdleme23.v 𝑉 = ((𝑆 𝑇) (𝑋 𝑊))
Assertion
Ref Expression
cdleme23b ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑉𝐴)

Proof of Theorem cdleme23b
StepHypRef Expression
1 cdleme23.v . 2 𝑉 = ((𝑆 𝑇) (𝑋 𝑊))
2 simp11l 1277 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ HL)
3 hlol 36028 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
42, 3syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ OL)
5 simp12l 1279 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆𝐴)
6 simp13l 1281 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑇𝐴)
7 cdleme23.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 cdleme23.j . . . . . . 7 = (join‘𝐾)
9 cdleme23.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 36034 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ 𝐵)
112, 5, 6, 10syl3anc 1364 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑆 𝑇) ∈ 𝐵)
122hllatd 36031 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ Lat)
13 simp2l 1192 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
14 simp11r 1278 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐻)
15 cdleme23.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
167, 15lhpbase 36665 . . . . . . . 8 (𝑊𝐻𝑊𝐵)
1714, 16syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐵)
18 cdleme23.m . . . . . . . 8 = (meet‘𝐾)
197, 18latmcl 17491 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
2012, 13, 17, 19syl3anc 1364 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) ∈ 𝐵)
217, 8latjcl 17490 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ 𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → ((𝑆 𝑇) (𝑋 𝑊)) ∈ 𝐵)
2212, 11, 20, 21syl3anc 1364 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) (𝑋 𝑊)) ∈ 𝐵)
237, 18latmassOLD 35896 . . . . 5 ((𝐾 ∈ OL ∧ ((𝑆 𝑇) ∈ 𝐵 ∧ ((𝑆 𝑇) (𝑋 𝑊)) ∈ 𝐵𝑊𝐵)) → (((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊))) 𝑊) = ((𝑆 𝑇) (((𝑆 𝑇) (𝑋 𝑊)) 𝑊)))
244, 11, 22, 17, 23syl13anc 1365 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊))) 𝑊) = ((𝑆 𝑇) (((𝑆 𝑇) (𝑋 𝑊)) 𝑊)))
25 cdleme23.l . . . . . . . 8 = (le‘𝐾)
267, 25, 8latlej1 17499 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ 𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊)))
2712, 11, 20, 26syl3anc 1364 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊)))
287, 25, 18latleeqm1 17518 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ 𝐵 ∧ ((𝑆 𝑇) (𝑋 𝑊)) ∈ 𝐵) → ((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊)) ↔ ((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊))) = (𝑆 𝑇)))
2912, 11, 22, 28syl3anc 1364 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊)) ↔ ((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊))) = (𝑆 𝑇)))
3027, 29mpbid 233 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊))) = (𝑆 𝑇))
3130oveq1d 7031 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊))) 𝑊) = ((𝑆 𝑇) 𝑊))
327, 9atbase 35956 . . . . . . . . 9 (𝑆𝐴𝑆𝐵)
335, 32syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆𝐵)
347, 9atbase 35956 . . . . . . . . 9 (𝑇𝐴𝑇𝐵)
356, 34syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑇𝐵)
367, 8latjjdir 17543 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑆𝐵𝑇𝐵 ∧ (𝑋 𝑊) ∈ 𝐵)) → ((𝑆 𝑇) (𝑋 𝑊)) = ((𝑆 (𝑋 𝑊)) (𝑇 (𝑋 𝑊))))
3712, 33, 35, 20, 36syl13anc 1365 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) (𝑋 𝑊)) = ((𝑆 (𝑋 𝑊)) (𝑇 (𝑋 𝑊))))
38 simp32 1203 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑆 (𝑋 𝑊)) = 𝑋)
39 simp33 1204 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑇 (𝑋 𝑊)) = 𝑋)
4038, 39oveq12d 7034 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 (𝑋 𝑊)) (𝑇 (𝑋 𝑊))) = (𝑋 𝑋))
417, 8latjidm 17513 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
4212, 13, 41syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑋) = 𝑋)
4337, 40, 423eqtrd 2835 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) (𝑋 𝑊)) = 𝑋)
4443oveq1d 7031 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (((𝑆 𝑇) (𝑋 𝑊)) 𝑊) = (𝑋 𝑊))
4544oveq2d 7032 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) (((𝑆 𝑇) (𝑋 𝑊)) 𝑊)) = ((𝑆 𝑇) (𝑋 𝑊)))
4624, 31, 453eqtr3d 2839 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) 𝑊) = ((𝑆 𝑇) (𝑋 𝑊)))
47 simp12r 1280 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ¬ 𝑆 𝑊)
48 simp31 1202 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆𝑇)
4925, 8, 18, 9, 15lhpat 36710 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑆𝑇)) → ((𝑆 𝑇) 𝑊) ∈ 𝐴)
502, 14, 5, 47, 6, 48, 49syl222anc 1379 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) 𝑊) ∈ 𝐴)
5146, 50eqeltrrd 2884 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) (𝑋 𝑊)) ∈ 𝐴)
521, 51syl5eqel 2887 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑉𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1080   = wceq 1522   ∈ wcel 2081   ≠ wne 2984   class class class wbr 4962  ‘cfv 6225  (class class class)co 7016  Basecbs 16312  lecple 16401  joincjn 17383  meetcmee 17384  Latclat 17484  OLcol 35841  Atomscatm 35930  HLchlt 36017  LHypclh 36651 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-proset 17367  df-poset 17385  df-plt 17397  df-lub 17413  df-glb 17414  df-join 17415  df-meet 17416  df-p0 17478  df-p1 17479  df-lat 17485  df-clat 17547  df-oposet 35843  df-ol 35845  df-oml 35846  df-covers 35933  df-ats 35934  df-atl 35965  df-cvlat 35989  df-hlat 36018  df-lhyp 36655 This theorem is referenced by:  cdleme28a  37037
 Copyright terms: Public domain W3C validator