Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme23b Structured version   Visualization version   GIF version

Theorem cdleme23b 40397
Description: Part of proof of Lemma E in [Crawley] p. 113, 4th paragraph, 6th line on p. 115. (Contributed by NM, 8-Dec-2012.)
Hypotheses
Ref Expression
cdleme23.b 𝐵 = (Base‘𝐾)
cdleme23.l = (le‘𝐾)
cdleme23.j = (join‘𝐾)
cdleme23.m = (meet‘𝐾)
cdleme23.a 𝐴 = (Atoms‘𝐾)
cdleme23.h 𝐻 = (LHyp‘𝐾)
cdleme23.v 𝑉 = ((𝑆 𝑇) (𝑋 𝑊))
Assertion
Ref Expression
cdleme23b ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑉𝐴)

Proof of Theorem cdleme23b
StepHypRef Expression
1 cdleme23.v . 2 𝑉 = ((𝑆 𝑇) (𝑋 𝑊))
2 simp11l 1285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ HL)
3 hlol 39408 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
42, 3syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ OL)
5 simp12l 1287 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆𝐴)
6 simp13l 1289 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑇𝐴)
7 cdleme23.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 cdleme23.j . . . . . . 7 = (join‘𝐾)
9 cdleme23.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatjcl 39414 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ 𝐵)
112, 5, 6, 10syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑆 𝑇) ∈ 𝐵)
122hllatd 39411 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ Lat)
13 simp2l 1200 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
14 simp11r 1286 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐻)
15 cdleme23.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
167, 15lhpbase 40045 . . . . . . . 8 (𝑊𝐻𝑊𝐵)
1714, 16syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐵)
18 cdleme23.m . . . . . . . 8 = (meet‘𝐾)
197, 18latmcl 18346 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
2012, 13, 17, 19syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) ∈ 𝐵)
217, 8latjcl 18345 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ 𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → ((𝑆 𝑇) (𝑋 𝑊)) ∈ 𝐵)
2212, 11, 20, 21syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) (𝑋 𝑊)) ∈ 𝐵)
237, 18latmassOLD 39276 . . . . 5 ((𝐾 ∈ OL ∧ ((𝑆 𝑇) ∈ 𝐵 ∧ ((𝑆 𝑇) (𝑋 𝑊)) ∈ 𝐵𝑊𝐵)) → (((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊))) 𝑊) = ((𝑆 𝑇) (((𝑆 𝑇) (𝑋 𝑊)) 𝑊)))
244, 11, 22, 17, 23syl13anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊))) 𝑊) = ((𝑆 𝑇) (((𝑆 𝑇) (𝑋 𝑊)) 𝑊)))
25 cdleme23.l . . . . . . . 8 = (le‘𝐾)
267, 25, 8latlej1 18354 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ 𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊)))
2712, 11, 20, 26syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊)))
287, 25, 18latleeqm1 18373 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ 𝐵 ∧ ((𝑆 𝑇) (𝑋 𝑊)) ∈ 𝐵) → ((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊)) ↔ ((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊))) = (𝑆 𝑇)))
2912, 11, 22, 28syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊)) ↔ ((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊))) = (𝑆 𝑇)))
3027, 29mpbid 232 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊))) = (𝑆 𝑇))
3130oveq1d 7361 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (((𝑆 𝑇) ((𝑆 𝑇) (𝑋 𝑊))) 𝑊) = ((𝑆 𝑇) 𝑊))
327, 9atbase 39336 . . . . . . . . 9 (𝑆𝐴𝑆𝐵)
335, 32syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆𝐵)
347, 9atbase 39336 . . . . . . . . 9 (𝑇𝐴𝑇𝐵)
356, 34syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑇𝐵)
367, 8latjjdir 18398 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑆𝐵𝑇𝐵 ∧ (𝑋 𝑊) ∈ 𝐵)) → ((𝑆 𝑇) (𝑋 𝑊)) = ((𝑆 (𝑋 𝑊)) (𝑇 (𝑋 𝑊))))
3712, 33, 35, 20, 36syl13anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) (𝑋 𝑊)) = ((𝑆 (𝑋 𝑊)) (𝑇 (𝑋 𝑊))))
38 simp32 1211 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑆 (𝑋 𝑊)) = 𝑋)
39 simp33 1212 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑇 (𝑋 𝑊)) = 𝑋)
4038, 39oveq12d 7364 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 (𝑋 𝑊)) (𝑇 (𝑋 𝑊))) = (𝑋 𝑋))
417, 8latjidm 18368 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
4212, 13, 41syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑋) = 𝑋)
4337, 40, 423eqtrd 2770 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) (𝑋 𝑊)) = 𝑋)
4443oveq1d 7361 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (((𝑆 𝑇) (𝑋 𝑊)) 𝑊) = (𝑋 𝑊))
4544oveq2d 7362 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) (((𝑆 𝑇) (𝑋 𝑊)) 𝑊)) = ((𝑆 𝑇) (𝑋 𝑊)))
4624, 31, 453eqtr3d 2774 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) 𝑊) = ((𝑆 𝑇) (𝑋 𝑊)))
47 simp12r 1288 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ¬ 𝑆 𝑊)
48 simp31 1210 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆𝑇)
4925, 8, 18, 9, 15lhpat 40090 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴𝑆𝑇)) → ((𝑆 𝑇) 𝑊) ∈ 𝐴)
502, 14, 5, 47, 6, 48, 49syl222anc 1388 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) 𝑊) ∈ 𝐴)
5146, 50eqeltrrd 2832 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 𝑇) (𝑋 𝑊)) ∈ 𝐴)
521, 51eqeltrid 2835 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑉𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  OLcol 39221  Atomscatm 39310  HLchlt 39397  LHypclh 40031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39223  df-ol 39225  df-oml 39226  df-covers 39313  df-ats 39314  df-atl 39345  df-cvlat 39369  df-hlat 39398  df-lhyp 40035
This theorem is referenced by:  cdleme28a  40417
  Copyright terms: Public domain W3C validator