Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp2at0nle Structured version   Visualization version   GIF version

Theorem lhp2at0nle 40029
Description: Inequality for 2 different atoms (or an atom and zero) under co-atom 𝑊. (Contributed by NM, 28-Jul-2013.)
Hypotheses
Ref Expression
lhp2at0nle.l = (le‘𝐾)
lhp2at0nle.j = (join‘𝐾)
lhp2at0nle.z 0 = (0.‘𝐾)
lhp2at0nle.a 𝐴 = (Atoms‘𝐾)
lhp2at0nle.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp2at0nle ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ¬ 𝑉 (𝑃 𝑈))

Proof of Theorem lhp2at0nle
StepHypRef Expression
1 simpl1 1192 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑈𝐴) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉))
2 simpr 484 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑈𝐴) → 𝑈𝐴)
3 simpl2r 1228 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑈𝐴) → 𝑈 𝑊)
4 simpl3 1194 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑈𝐴) → (𝑉𝐴𝑉 𝑊))
5 lhp2at0nle.l . . . 4 = (le‘𝐾)
6 lhp2at0nle.j . . . 4 = (join‘𝐾)
7 lhp2at0nle.a . . . 4 𝐴 = (Atoms‘𝐾)
8 lhp2at0nle.h . . . 4 𝐻 = (LHyp‘𝐾)
95, 6, 7, 8lhp2atnle 40027 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ (𝑈𝐴𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ¬ 𝑉 (𝑃 𝑈))
101, 2, 3, 4, 9syl121anc 1377 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑈𝐴) → ¬ 𝑉 (𝑃 𝑈))
11 simp3r 1203 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉 𝑊)
12 simp12r 1288 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ¬ 𝑃 𝑊)
13 nbrne2 5127 . . . . . . 7 ((𝑉 𝑊 ∧ ¬ 𝑃 𝑊) → 𝑉𝑃)
1411, 12, 13syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉𝑃)
1514neneqd 2930 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ¬ 𝑉 = 𝑃)
16 simp11l 1285 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ HL)
17 hlatl 39353 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1816, 17syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ AtLat)
19 simp3l 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑉𝐴)
20 simp12l 1287 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑃𝐴)
215, 7atcmp 39304 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑉𝐴𝑃𝐴) → (𝑉 𝑃𝑉 = 𝑃))
2218, 19, 20, 21syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑉 𝑃𝑉 = 𝑃))
2315, 22mtbird 325 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ¬ 𝑉 𝑃)
2423adantr 480 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑈 = 0 ) → ¬ 𝑉 𝑃)
25 oveq2 7395 . . . . 5 (𝑈 = 0 → (𝑃 𝑈) = (𝑃 0 ))
26 hlol 39354 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
2716, 26syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝐾 ∈ OL)
28 eqid 2729 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2928, 7atbase 39282 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3020, 29syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → 𝑃 ∈ (Base‘𝐾))
31 lhp2at0nle.z . . . . . . 7 0 = (0.‘𝐾)
3228, 6, 31olj01 39218 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 0 ) = 𝑃)
3327, 30, 32syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑃 0 ) = 𝑃)
3425, 33sylan9eqr 2786 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑈 = 0 ) → (𝑃 𝑈) = 𝑃)
3534breq2d 5119 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑈 = 0 ) → (𝑉 (𝑃 𝑈) ↔ 𝑉 𝑃))
3624, 35mtbird 325 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ 𝑈 = 0 ) → ¬ 𝑉 (𝑃 𝑈))
37 simp2l 1200 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → (𝑈𝐴𝑈 = 0 ))
3810, 36, 37mpjaodan 960 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑈𝑉) ∧ ((𝑈𝐴𝑈 = 0 ) ∧ 𝑈 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) → ¬ 𝑉 (𝑃 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  0.cp0 18382  OLcol 39167  Atomscatm 39256  AtLatcal 39257  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982
This theorem is referenced by:  lhp2at0ne  40030  cdlemkfid1N  40915
  Copyright terms: Public domain W3C validator