Proof of Theorem lhp2at0nle
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1192 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 ∈ 𝐴) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉)) |
| 2 | | simpr 484 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 ∈ 𝐴) → 𝑈 ∈ 𝐴) |
| 3 | | simpl2r 1228 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 ∈ 𝐴) → 𝑈 ≤ 𝑊) |
| 4 | | simpl3 1194 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 ∈ 𝐴) → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
| 5 | | lhp2at0nle.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 6 | | lhp2at0nle.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 7 | | lhp2at0nle.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 8 | | lhp2at0nle.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 9 | 5, 6, 7, 8 | lhp2atnle 40035 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ¬ 𝑉 ≤ (𝑃 ∨ 𝑈)) |
| 10 | 1, 2, 3, 4, 9 | syl121anc 1377 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 ∈ 𝐴) → ¬ 𝑉 ≤ (𝑃 ∨ 𝑈)) |
| 11 | | simp3r 1203 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑉 ≤ 𝑊) |
| 12 | | simp12r 1288 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) |
| 13 | | nbrne2 5163 |
. . . . . . 7
⊢ ((𝑉 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑉 ≠ 𝑃) |
| 14 | 11, 12, 13 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑉 ≠ 𝑃) |
| 15 | 14 | neneqd 2945 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ¬ 𝑉 = 𝑃) |
| 16 | | simp11l 1285 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝐾 ∈ HL) |
| 17 | | hlatl 39361 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 18 | 16, 17 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝐾 ∈ AtLat) |
| 19 | | simp3l 1202 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑉 ∈ 𝐴) |
| 20 | | simp12l 1287 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
| 21 | 5, 7 | atcmp 39312 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ 𝑉 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑉 ≤ 𝑃 ↔ 𝑉 = 𝑃)) |
| 22 | 18, 19, 20, 21 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝑉 ≤ 𝑃 ↔ 𝑉 = 𝑃)) |
| 23 | 15, 22 | mtbird 325 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ¬ 𝑉 ≤ 𝑃) |
| 24 | 23 | adantr 480 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 = 0 ) → ¬ 𝑉 ≤ 𝑃) |
| 25 | | oveq2 7439 |
. . . . 5
⊢ (𝑈 = 0 → (𝑃 ∨ 𝑈) = (𝑃 ∨ 0 )) |
| 26 | | hlol 39362 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| 27 | 16, 26 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝐾 ∈ OL) |
| 28 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 29 | 28, 7 | atbase 39290 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 30 | 20, 29 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑃 ∈ (Base‘𝐾)) |
| 31 | | lhp2at0nle.z |
. . . . . . 7
⊢ 0 =
(0.‘𝐾) |
| 32 | 28, 6, 31 | olj01 39226 |
. . . . . 6
⊢ ((𝐾 ∈ OL ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 ∨ 0 ) = 𝑃) |
| 33 | 27, 30, 32 | syl2anc 584 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝑃 ∨ 0 ) = 𝑃) |
| 34 | 25, 33 | sylan9eqr 2799 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 = 0 ) → (𝑃 ∨ 𝑈) = 𝑃) |
| 35 | 34 | breq2d 5155 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 = 0 ) → (𝑉 ≤ (𝑃 ∨ 𝑈) ↔ 𝑉 ≤ 𝑃)) |
| 36 | 24, 35 | mtbird 325 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 = 0 ) → ¬ 𝑉 ≤ (𝑃 ∨ 𝑈)) |
| 37 | | simp2l 1200 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝑈 ∈ 𝐴 ∨ 𝑈 = 0 )) |
| 38 | 10, 36, 37 | mpjaodan 961 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ¬ 𝑉 ≤ (𝑃 ∨ 𝑈)) |