Proof of Theorem lhp2at0nle
Step | Hyp | Ref
| Expression |
1 | | simpl1 1188 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 ∈ 𝐴) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉)) |
2 | | simpr 488 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 ∈ 𝐴) → 𝑈 ∈ 𝐴) |
3 | | simpl2r 1224 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 ∈ 𝐴) → 𝑈 ≤ 𝑊) |
4 | | simpl3 1190 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 ∈ 𝐴) → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
5 | | lhp2at0nle.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
6 | | lhp2at0nle.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
7 | | lhp2at0nle.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
8 | | lhp2at0nle.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
9 | 5, 6, 7, 8 | lhp2atnle 37643 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ (𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ¬ 𝑉 ≤ (𝑃 ∨ 𝑈)) |
10 | 1, 2, 3, 4, 9 | syl121anc 1372 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 ∈ 𝐴) → ¬ 𝑉 ≤ (𝑃 ∨ 𝑈)) |
11 | | simp3r 1199 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑉 ≤ 𝑊) |
12 | | simp12r 1284 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) |
13 | | nbrne2 5056 |
. . . . . . 7
⊢ ((𝑉 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊) → 𝑉 ≠ 𝑃) |
14 | 11, 12, 13 | syl2anc 587 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑉 ≠ 𝑃) |
15 | 14 | neneqd 2956 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ¬ 𝑉 = 𝑃) |
16 | | simp11l 1281 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝐾 ∈ HL) |
17 | | hlatl 36970 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
18 | 16, 17 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝐾 ∈ AtLat) |
19 | | simp3l 1198 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑉 ∈ 𝐴) |
20 | | simp12l 1283 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑃 ∈ 𝐴) |
21 | 5, 7 | atcmp 36921 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ 𝑉 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑉 ≤ 𝑃 ↔ 𝑉 = 𝑃)) |
22 | 18, 19, 20, 21 | syl3anc 1368 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝑉 ≤ 𝑃 ↔ 𝑉 = 𝑃)) |
23 | 15, 22 | mtbird 328 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ¬ 𝑉 ≤ 𝑃) |
24 | 23 | adantr 484 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 = 0 ) → ¬ 𝑉 ≤ 𝑃) |
25 | | oveq2 7164 |
. . . . 5
⊢ (𝑈 = 0 → (𝑃 ∨ 𝑈) = (𝑃 ∨ 0 )) |
26 | | hlol 36971 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
27 | 16, 26 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝐾 ∈ OL) |
28 | | eqid 2758 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
29 | 28, 7 | atbase 36899 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
30 | 20, 29 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → 𝑃 ∈ (Base‘𝐾)) |
31 | | lhp2at0nle.z |
. . . . . . 7
⊢ 0 =
(0.‘𝐾) |
32 | 28, 6, 31 | olj01 36835 |
. . . . . 6
⊢ ((𝐾 ∈ OL ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 ∨ 0 ) = 𝑃) |
33 | 27, 30, 32 | syl2anc 587 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝑃 ∨ 0 ) = 𝑃) |
34 | 25, 33 | sylan9eqr 2815 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 = 0 ) → (𝑃 ∨ 𝑈) = 𝑃) |
35 | 34 | breq2d 5048 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 = 0 ) → (𝑉 ≤ (𝑃 ∨ 𝑈) ↔ 𝑉 ≤ 𝑃)) |
36 | 24, 35 | mtbird 328 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ 𝑈 = 0 ) → ¬ 𝑉 ≤ (𝑃 ∨ 𝑈)) |
37 | | simp2l 1196 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → (𝑈 ∈ 𝐴 ∨ 𝑈 = 0 )) |
38 | 10, 36, 37 | mpjaodan 956 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑈 ≠ 𝑉) ∧ ((𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) → ¬ 𝑉 ≤ (𝑃 ∨ 𝑈)) |