| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl31 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl31 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
| 2 | 1 | 3ad2antl3 1188 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: nosupres 27676 noinfres 27691 ax5seglem3a 28914 ax5seg 28922 uhgrwkspth 29742 usgr2wlkspth 29746 br8d 32595 br8 35778 cgrextend 36031 segconeq 36033 trisegint 36051 ifscgr 36067 cgrsub 36068 btwnxfr 36079 seglecgr12im 36133 segletr 36137 atbtwn 39470 3dim1 39491 2llnjaN 39590 4atlem10b 39629 4atlem11 39633 4atlem12 39636 2lplnj 39644 paddasslem4 39847 pmodlem1 39870 4atex2 40101 trlval3 40211 arglem1N 40214 cdleme0moN 40249 cdleme17b 40311 cdleme20 40348 cdleme21j 40360 cdleme28c 40396 cdleme35h2 40481 cdlemg6c 40644 cdlemg6 40647 cdlemg7N 40650 cdlemg8c 40653 cdlemg11a 40661 cdlemg11b 40666 cdlemg12e 40671 cdlemg16 40681 cdlemg16ALTN 40682 cdlemg16zz 40684 cdlemg20 40709 cdlemg22 40711 cdlemg37 40713 cdlemg31d 40724 cdlemg33b 40731 cdlemg33 40735 cdlemg39 40740 cdlemg42 40753 cdlemk25-3 40928 cdlemk33N 40933 cdlemk53b 40980 |
| Copyright terms: Public domain | W3C validator |