| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl31 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl31 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
| 2 | 1 | 3ad2antl3 1188 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: nosupres 27649 noinfres 27664 ax5seglem3a 28912 ax5seg 28920 uhgrwkspth 29737 usgr2wlkspth 29741 br8d 32595 br8 35823 cgrextend 36075 segconeq 36077 trisegint 36095 ifscgr 36111 cgrsub 36112 btwnxfr 36123 seglecgr12im 36177 segletr 36181 atbtwn 39568 3dim1 39589 2llnjaN 39688 4atlem10b 39727 4atlem11 39731 4atlem12 39734 2lplnj 39742 paddasslem4 39945 pmodlem1 39968 4atex2 40199 trlval3 40309 arglem1N 40312 cdleme0moN 40347 cdleme17b 40409 cdleme20 40446 cdleme21j 40458 cdleme28c 40494 cdleme35h2 40579 cdlemg6c 40742 cdlemg6 40745 cdlemg7N 40748 cdlemg8c 40751 cdlemg11a 40759 cdlemg11b 40764 cdlemg12e 40769 cdlemg16 40779 cdlemg16ALTN 40780 cdlemg16zz 40782 cdlemg20 40807 cdlemg22 40809 cdlemg37 40811 cdlemg31d 40822 cdlemg33b 40829 cdlemg33 40833 cdlemg39 40838 cdlemg42 40851 cdlemk25-3 41026 cdlemk33N 41031 cdlemk53b 41078 |
| Copyright terms: Public domain | W3C validator |