![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl31 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl31 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1199 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
2 | 1 | 3ad2antl3 1195 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-3an 1073 |
This theorem is referenced by: ax5seglem3a 26279 ax5seg 26287 uhgrwkspth 27107 usgr2wlkspth 27111 br8d 29985 br8 32240 nosupres 32442 cgrextend 32704 segconeq 32706 trisegint 32724 ifscgr 32740 cgrsub 32741 btwnxfr 32752 seglecgr12im 32806 segletr 32810 atbtwn 35600 3dim1 35621 2llnjaN 35720 4atlem10b 35759 4atlem11 35763 4atlem12 35766 2lplnj 35774 paddasslem4 35977 pmodlem1 36000 4atex2 36231 trlval3 36341 arglem1N 36344 cdleme0moN 36379 cdleme17b 36441 cdleme20 36478 cdleme21j 36490 cdleme28c 36526 cdleme35h2 36611 cdlemg6c 36774 cdlemg6 36777 cdlemg7N 36780 cdlemg8c 36783 cdlemg11a 36791 cdlemg11b 36796 cdlemg12e 36801 cdlemg16 36811 cdlemg16ALTN 36812 cdlemg16zz 36814 cdlemg20 36839 cdlemg22 36841 cdlemg37 36843 cdlemg31d 36854 cdlemg33b 36861 cdlemg33 36865 cdlemg39 36870 cdlemg42 36883 cdlemk25-3 37058 cdlemk33N 37063 cdlemk53b 37110 |
Copyright terms: Public domain | W3C validator |