| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl31 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl31 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
| 2 | 1 | 3ad2antl3 1188 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: nosupres 27635 noinfres 27650 ax5seglem3a 28893 ax5seg 28901 uhgrwkspth 29718 usgr2wlkspth 29722 br8d 32571 br8 35731 cgrextend 35984 segconeq 35986 trisegint 36004 ifscgr 36020 cgrsub 36021 btwnxfr 36032 seglecgr12im 36086 segletr 36090 atbtwn 39428 3dim1 39449 2llnjaN 39548 4atlem10b 39587 4atlem11 39591 4atlem12 39594 2lplnj 39602 paddasslem4 39805 pmodlem1 39828 4atex2 40059 trlval3 40169 arglem1N 40172 cdleme0moN 40207 cdleme17b 40269 cdleme20 40306 cdleme21j 40318 cdleme28c 40354 cdleme35h2 40439 cdlemg6c 40602 cdlemg6 40605 cdlemg7N 40608 cdlemg8c 40611 cdlemg11a 40619 cdlemg11b 40624 cdlemg12e 40629 cdlemg16 40639 cdlemg16ALTN 40640 cdlemg16zz 40642 cdlemg20 40667 cdlemg22 40669 cdlemg37 40671 cdlemg31d 40682 cdlemg33b 40689 cdlemg33 40693 cdlemg39 40698 cdlemg42 40711 cdlemk25-3 40886 cdlemk33N 40891 cdlemk53b 40938 |
| Copyright terms: Public domain | W3C validator |