Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl31 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl31 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
2 | 1 | 3ad2antl3 1186 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: ax5seglem3a 27286 ax5seg 27294 uhgrwkspth 28109 usgr2wlkspth 28113 br8d 30936 br8 33709 nosupres 33896 noinfres 33911 cgrextend 34296 segconeq 34298 trisegint 34316 ifscgr 34332 cgrsub 34333 btwnxfr 34344 seglecgr12im 34398 segletr 34402 atbtwn 37446 3dim1 37467 2llnjaN 37566 4atlem10b 37605 4atlem11 37609 4atlem12 37612 2lplnj 37620 paddasslem4 37823 pmodlem1 37846 4atex2 38077 trlval3 38187 arglem1N 38190 cdleme0moN 38225 cdleme17b 38287 cdleme20 38324 cdleme21j 38336 cdleme28c 38372 cdleme35h2 38457 cdlemg6c 38620 cdlemg6 38623 cdlemg7N 38626 cdlemg8c 38629 cdlemg11a 38637 cdlemg11b 38642 cdlemg12e 38647 cdlemg16 38657 cdlemg16ALTN 38658 cdlemg16zz 38660 cdlemg20 38685 cdlemg22 38687 cdlemg37 38689 cdlemg31d 38700 cdlemg33b 38707 cdlemg33 38711 cdlemg39 38716 cdlemg42 38729 cdlemk25-3 38904 cdlemk33N 38909 cdlemk53b 38956 |
Copyright terms: Public domain | W3C validator |