Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme17b Structured version   Visualization version   GIF version

Theorem cdleme17b 37856
Description: Lemma leading to cdleme17c 37857. (Contributed by NM, 11-Oct-2012.)
Hypotheses
Ref Expression
cdleme17.l = (le‘𝐾)
cdleme17.j = (join‘𝐾)
cdleme17.m = (meet‘𝐾)
cdleme17.a 𝐴 = (Atoms‘𝐾)
cdleme17.h 𝐻 = (LHyp‘𝐾)
cdleme17.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme17.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme17.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊)))
cdleme17.c 𝐶 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
cdleme17b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝐶 (𝑃 𝑄))

Proof of Theorem cdleme17b
StepHypRef Expression
1 simp33 1209 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑆 (𝑃 𝑄))
2 eqid 2759 . . 3 (Base‘𝐾) = (Base‘𝐾)
3 cdleme17.l . . 3 = (le‘𝐾)
4 simpl1l 1222 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝐾 ∈ HL)
54hllatd 36933 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝐾 ∈ Lat)
6 simpl32 1253 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑆𝐴)
7 cdleme17.a . . . . 5 𝐴 = (Atoms‘𝐾)
82, 7atbase 36858 . . . 4 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
96, 8syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑆 ∈ (Base‘𝐾))
10 simpl2l 1224 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑃𝐴)
11 cdleme17.j . . . . 5 = (join‘𝐾)
122, 11, 7hlatjcl 36936 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
134, 10, 6, 12syl3anc 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → (𝑃 𝑆) ∈ (Base‘𝐾))
14 simpl31 1252 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑄𝐴)
152, 11, 7hlatjcl 36936 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
164, 10, 14, 15syl3anc 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → (𝑃 𝑄) ∈ (Base‘𝐾))
173, 11, 7hlatlej2 36945 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → 𝑆 (𝑃 𝑆))
184, 10, 6, 17syl3anc 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑆 (𝑃 𝑆))
19 simpl1r 1223 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑊𝐻)
20 simpl2r 1225 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → ¬ 𝑃 𝑊)
21 cdleme17.m . . . . . 6 = (meet‘𝐾)
22 cdleme17.h . . . . . 6 𝐻 = (LHyp‘𝐾)
23 cdleme17.c . . . . . 6 𝐶 = ((𝑃 𝑆) 𝑊)
243, 11, 21, 7, 22, 23cdleme8 37819 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑆𝐴) → (𝑃 𝐶) = (𝑃 𝑆))
254, 19, 10, 20, 6, 24syl221anc 1379 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → (𝑃 𝐶) = (𝑃 𝑆))
263, 11, 7hlatlej1 36944 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 (𝑃 𝑄))
274, 10, 14, 26syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑃 (𝑃 𝑄))
28 simpr 489 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝐶 (𝑃 𝑄))
292, 7atbase 36858 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3010, 29syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑃 ∈ (Base‘𝐾))
312, 11, 21, 7, 22, 23cdleme9b 37821 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐶 ∈ (Base‘𝐾))
324, 10, 6, 19, 31syl13anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝐶 ∈ (Base‘𝐾))
332, 3, 11latjle12 17731 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑄) ∧ 𝐶 (𝑃 𝑄)) ↔ (𝑃 𝐶) (𝑃 𝑄)))
345, 30, 32, 16, 33syl13anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → ((𝑃 (𝑃 𝑄) ∧ 𝐶 (𝑃 𝑄)) ↔ (𝑃 𝐶) (𝑃 𝑄)))
3527, 28, 34mpbi2and 712 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → (𝑃 𝐶) (𝑃 𝑄))
3625, 35eqbrtrrd 5057 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → (𝑃 𝑆) (𝑃 𝑄))
372, 3, 5, 9, 13, 16, 18, 36lattrd 17727 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑆 (𝑃 𝑄))
381, 37mtand 816 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝐶 (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112   class class class wbr 5033  cfv 6336  (class class class)co 7151  Basecbs 16534  lecple 16623  joincjn 17613  meetcmee 17614  Latclat 17714  Atomscatm 36832  HLchlt 36919  LHypclh 37553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7694  df-2nd 7695  df-proset 17597  df-poset 17615  df-plt 17627  df-lub 17643  df-glb 17644  df-join 17645  df-meet 17646  df-p0 17708  df-p1 17709  df-lat 17715  df-clat 17777  df-oposet 36745  df-ol 36747  df-oml 36748  df-covers 36835  df-ats 36836  df-atl 36867  df-cvlat 36891  df-hlat 36920  df-psubsp 37072  df-pmap 37073  df-padd 37365  df-lhyp 37557
This theorem is referenced by:  cdleme17c  37857
  Copyright terms: Public domain W3C validator