Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme17b Structured version   Visualization version   GIF version

Theorem cdleme17b 39153
Description: Lemma leading to cdleme17c 39154. (Contributed by NM, 11-Oct-2012.)
Hypotheses
Ref Expression
cdleme17.l ≀ = (leβ€˜πΎ)
cdleme17.j ∨ = (joinβ€˜πΎ)
cdleme17.m ∧ = (meetβ€˜πΎ)
cdleme17.a 𝐴 = (Atomsβ€˜πΎ)
cdleme17.h 𝐻 = (LHypβ€˜πΎ)
cdleme17.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme17.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme17.g 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme17.c 𝐢 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
Assertion
Ref Expression
cdleme17b (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄))

Proof of Theorem cdleme17b
StepHypRef Expression
1 simp33 1211 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
2 eqid 2732 . . 3 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
3 cdleme17.l . . 3 ≀ = (leβ€˜πΎ)
4 simpl1l 1224 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ 𝐾 ∈ HL)
54hllatd 38229 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ 𝐾 ∈ Lat)
6 simpl32 1255 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑆 ∈ 𝐴)
7 cdleme17.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
82, 7atbase 38154 . . . 4 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
96, 8syl 17 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
10 simpl2l 1226 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑃 ∈ 𝐴)
11 cdleme17.j . . . . 5 ∨ = (joinβ€˜πΎ)
122, 11, 7hlatjcl 38232 . . . 4 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
134, 10, 6, 12syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
14 simpl31 1254 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑄 ∈ 𝐴)
152, 11, 7hlatjcl 38232 . . . 4 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
164, 10, 14, 15syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
173, 11, 7hlatlej2 38241 . . . 4 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ 𝑆 ≀ (𝑃 ∨ 𝑆))
184, 10, 6, 17syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑆 ≀ (𝑃 ∨ 𝑆))
19 simpl1r 1225 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ π‘Š ∈ 𝐻)
20 simpl2r 1227 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ Β¬ 𝑃 ≀ π‘Š)
21 cdleme17.m . . . . . 6 ∧ = (meetβ€˜πΎ)
22 cdleme17.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
23 cdleme17.c . . . . . 6 𝐢 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
243, 11, 21, 7, 22, 23cdleme8 39116 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ 𝐢) = (𝑃 ∨ 𝑆))
254, 19, 10, 20, 6, 24syl221anc 1381 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ 𝐢) = (𝑃 ∨ 𝑆))
263, 11, 7hlatlej1 38240 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ 𝑃 ≀ (𝑃 ∨ 𝑄))
274, 10, 14, 26syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑃 ≀ (𝑃 ∨ 𝑄))
28 simpr 485 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ 𝐢 ≀ (𝑃 ∨ 𝑄))
292, 7atbase 38154 . . . . . . 7 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
3010, 29syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
312, 11, 21, 7, 22, 23cdleme9b 39118 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ π‘Š ∈ 𝐻)) β†’ 𝐢 ∈ (Baseβ€˜πΎ))
324, 10, 6, 19, 31syl13anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ 𝐢 ∈ (Baseβ€˜πΎ))
332, 3, 11latjle12 18402 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝐢 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))) β†’ ((𝑃 ≀ (𝑃 ∨ 𝑄) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) ↔ (𝑃 ∨ 𝐢) ≀ (𝑃 ∨ 𝑄)))
345, 30, 32, 16, 33syl13anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑃 ≀ (𝑃 ∨ 𝑄) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) ↔ (𝑃 ∨ 𝐢) ≀ (𝑃 ∨ 𝑄)))
3527, 28, 34mpbi2and 710 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ 𝐢) ≀ (𝑃 ∨ 𝑄))
3625, 35eqbrtrrd 5172 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ 𝑆) ≀ (𝑃 ∨ 𝑄))
372, 3, 5, 9, 13, 16, 18, 36lattrd 18398 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) ∧ 𝐢 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑆 ≀ (𝑃 ∨ 𝑄))
381, 37mtand 814 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  lecple 17203  joincjn 18263  meetcmee 18264  Latclat 18383  Atomscatm 38128  HLchlt 38215  LHypclh 38850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-psubsp 38369  df-pmap 38370  df-padd 38662  df-lhyp 38854
This theorem is referenced by:  cdleme17c  39154
  Copyright terms: Public domain W3C validator