Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme17b Structured version   Visualization version   GIF version

Theorem cdleme17b 40281
Description: Lemma leading to cdleme17c 40282. (Contributed by NM, 11-Oct-2012.)
Hypotheses
Ref Expression
cdleme17.l = (le‘𝐾)
cdleme17.j = (join‘𝐾)
cdleme17.m = (meet‘𝐾)
cdleme17.a 𝐴 = (Atoms‘𝐾)
cdleme17.h 𝐻 = (LHyp‘𝐾)
cdleme17.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme17.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme17.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊)))
cdleme17.c 𝐶 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
cdleme17b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝐶 (𝑃 𝑄))

Proof of Theorem cdleme17b
StepHypRef Expression
1 simp33 1212 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑆 (𝑃 𝑄))
2 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
3 cdleme17.l . . 3 = (le‘𝐾)
4 simpl1l 1225 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝐾 ∈ HL)
54hllatd 39357 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝐾 ∈ Lat)
6 simpl32 1256 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑆𝐴)
7 cdleme17.a . . . . 5 𝐴 = (Atoms‘𝐾)
82, 7atbase 39282 . . . 4 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
96, 8syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑆 ∈ (Base‘𝐾))
10 simpl2l 1227 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑃𝐴)
11 cdleme17.j . . . . 5 = (join‘𝐾)
122, 11, 7hlatjcl 39360 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
134, 10, 6, 12syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → (𝑃 𝑆) ∈ (Base‘𝐾))
14 simpl31 1255 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑄𝐴)
152, 11, 7hlatjcl 39360 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
164, 10, 14, 15syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → (𝑃 𝑄) ∈ (Base‘𝐾))
173, 11, 7hlatlej2 39369 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → 𝑆 (𝑃 𝑆))
184, 10, 6, 17syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑆 (𝑃 𝑆))
19 simpl1r 1226 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑊𝐻)
20 simpl2r 1228 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → ¬ 𝑃 𝑊)
21 cdleme17.m . . . . . 6 = (meet‘𝐾)
22 cdleme17.h . . . . . 6 𝐻 = (LHyp‘𝐾)
23 cdleme17.c . . . . . 6 𝐶 = ((𝑃 𝑆) 𝑊)
243, 11, 21, 7, 22, 23cdleme8 40244 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑆𝐴) → (𝑃 𝐶) = (𝑃 𝑆))
254, 19, 10, 20, 6, 24syl221anc 1383 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → (𝑃 𝐶) = (𝑃 𝑆))
263, 11, 7hlatlej1 39368 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 (𝑃 𝑄))
274, 10, 14, 26syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑃 (𝑃 𝑄))
28 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝐶 (𝑃 𝑄))
292, 7atbase 39282 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3010, 29syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑃 ∈ (Base‘𝐾))
312, 11, 21, 7, 22, 23cdleme9b 40246 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑊𝐻)) → 𝐶 ∈ (Base‘𝐾))
324, 10, 6, 19, 31syl13anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝐶 ∈ (Base‘𝐾))
332, 3, 11latjle12 18409 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑄) ∧ 𝐶 (𝑃 𝑄)) ↔ (𝑃 𝐶) (𝑃 𝑄)))
345, 30, 32, 16, 33syl13anc 1374 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → ((𝑃 (𝑃 𝑄) ∧ 𝐶 (𝑃 𝑄)) ↔ (𝑃 𝐶) (𝑃 𝑄)))
3527, 28, 34mpbi2and 712 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → (𝑃 𝐶) (𝑃 𝑄))
3625, 35eqbrtrrd 5131 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → (𝑃 𝑆) (𝑃 𝑄))
372, 3, 5, 9, 13, 16, 18, 36lattrd 18405 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) ∧ 𝐶 (𝑃 𝑄)) → 𝑆 (𝑃 𝑄))
381, 37mtand 815 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝐶 (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Latclat 18390  Atomscatm 39256  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982
This theorem is referenced by:  cdleme17c  40282
  Copyright terms: Public domain W3C validator