Proof of Theorem cdleme17b
Step | Hyp | Ref
| Expression |
1 | | simp33 1209 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
2 | | eqid 2738 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
3 | | cdleme17.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
4 | | simpl1l 1222 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ HL) |
5 | 4 | hllatd 37305 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ Lat) |
6 | | simpl32 1253 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ∈ 𝐴) |
7 | | cdleme17.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
8 | 2, 7 | atbase 37230 |
. . . 4
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
9 | 6, 8 | syl 17 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ∈ (Base‘𝐾)) |
10 | | simpl2l 1224 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ∈ 𝐴) |
11 | | cdleme17.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
12 | 2, 11, 7 | hlatjcl 37308 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
13 | 4, 10, 6, 12 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
14 | | simpl31 1252 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
15 | 2, 11, 7 | hlatjcl 37308 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
16 | 4, 10, 14, 15 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
17 | 3, 11, 7 | hlatlej2 37317 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑆 ≤ (𝑃 ∨ 𝑆)) |
18 | 4, 10, 6, 17 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ≤ (𝑃 ∨ 𝑆)) |
19 | | simpl1r 1223 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → 𝑊 ∈ 𝐻) |
20 | | simpl2r 1225 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑃 ≤ 𝑊) |
21 | | cdleme17.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
22 | | cdleme17.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
23 | | cdleme17.c |
. . . . . 6
⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
24 | 3, 11, 21, 7, 22, 23 | cdleme8 38191 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝐶) = (𝑃 ∨ 𝑆)) |
25 | 4, 19, 10, 20, 6, 24 | syl221anc 1379 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝐶) = (𝑃 ∨ 𝑆)) |
26 | 3, 11, 7 | hlatlej1 37316 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
27 | 4, 10, 14, 26 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
28 | | simpr 484 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → 𝐶 ≤ (𝑃 ∨ 𝑄)) |
29 | 2, 7 | atbase 37230 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
30 | 10, 29 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ∈ (Base‘𝐾)) |
31 | 2, 11, 21, 7, 22, 23 | cdleme9b 38193 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → 𝐶 ∈ (Base‘𝐾)) |
32 | 4, 10, 6, 19, 31 | syl13anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → 𝐶 ∈ (Base‘𝐾)) |
33 | 2, 3, 11 | latjle12 18083 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑃 ∨ 𝑄) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) ↔ (𝑃 ∨ 𝐶) ≤ (𝑃 ∨ 𝑄))) |
34 | 5, 30, 32, 16, 33 | syl13anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ≤ (𝑃 ∨ 𝑄) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) ↔ (𝑃 ∨ 𝐶) ≤ (𝑃 ∨ 𝑄))) |
35 | 27, 28, 34 | mpbi2and 708 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝐶) ≤ (𝑃 ∨ 𝑄)) |
36 | 25, 35 | eqbrtrrd 5094 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝑆) ≤ (𝑃 ∨ 𝑄)) |
37 | 2, 3, 5, 9, 13, 16, 18, 36 | lattrd 18079 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) ∧ 𝐶 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ≤ (𝑃 ∨ 𝑄)) |
38 | 1, 37 | mtand 812 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) |