Proof of Theorem cdlemg11b
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp33 1211 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄)) | 
| 2 |  | simpl1 1191 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 3 |  | simpl31 1254 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → 𝐺 ∈ 𝑇) | 
| 4 |  | simpl2l 1226 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 5 |  | cdlemg8.l | . . . . . . 7
⊢  ≤ =
(le‘𝐾) | 
| 6 |  | cdlemg8.j | . . . . . . 7
⊢  ∨ =
(join‘𝐾) | 
| 7 |  | cdlemg8.m | . . . . . . 7
⊢  ∧ =
(meet‘𝐾) | 
| 8 |  | cdlemg8.a | . . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) | 
| 9 |  | cdlemg8.h | . . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) | 
| 10 |  | cdlemg8.t | . . . . . . 7
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 11 |  | cdlemg10.r | . . . . . . 7
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 12 | 5, 6, 7, 8, 9, 10,
11 | trlval2 40166 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐺) = ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊)) | 
| 13 | 2, 3, 4, 12 | syl3anc 1372 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → (𝑅‘𝐺) = ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊)) | 
| 14 |  | eqid 2736 | . . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 15 |  | simpl1l 1224 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → 𝐾 ∈ HL) | 
| 16 | 15 | hllatd 39366 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → 𝐾 ∈ Lat) | 
| 17 |  | simp2ll 1240 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝑃 ∈ 𝐴) | 
| 18 | 17 | adantr 480 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → 𝑃 ∈ 𝐴) | 
| 19 | 14, 8 | atbase 39291 | . . . . . . . . 9
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) | 
| 20 | 18, 19 | syl 17 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → 𝑃 ∈ (Base‘𝐾)) | 
| 21 | 14, 9, 10 | ltrncl 40128 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝐺‘𝑃) ∈ (Base‘𝐾)) | 
| 22 | 2, 3, 20, 21 | syl3anc 1372 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → (𝐺‘𝑃) ∈ (Base‘𝐾)) | 
| 23 | 14, 6 | latjcl 18485 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐺‘𝑃) ∈ (Base‘𝐾)) → (𝑃 ∨ (𝐺‘𝑃)) ∈ (Base‘𝐾)) | 
| 24 | 16, 20, 22, 23 | syl3anc 1372 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → (𝑃 ∨ (𝐺‘𝑃)) ∈ (Base‘𝐾)) | 
| 25 |  | simpl1r 1225 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → 𝑊 ∈ 𝐻) | 
| 26 | 14, 9 | lhpbase 40001 | . . . . . . . 8
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) | 
| 27 | 25, 26 | syl 17 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → 𝑊 ∈ (Base‘𝐾)) | 
| 28 | 14, 7 | latmcl 18486 | . . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ (𝐺‘𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊) ∈ (Base‘𝐾)) | 
| 29 | 16, 24, 27, 28 | syl3anc 1372 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊) ∈ (Base‘𝐾)) | 
| 30 |  | simpl2r 1227 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → 𝑄 ∈ 𝐴) | 
| 31 | 14, 8 | atbase 39291 | . . . . . . . 8
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) | 
| 32 | 30, 31 | syl 17 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → 𝑄 ∈ (Base‘𝐾)) | 
| 33 | 14, 6 | latjcl 18485 | . . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 34 | 16, 20, 32, 33 | syl3anc 1372 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 35 | 14, 5, 7 | latmle1 18510 | . . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ (𝐺‘𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊) ≤ (𝑃 ∨ (𝐺‘𝑃))) | 
| 36 | 16, 24, 27, 35 | syl3anc 1372 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊) ≤ (𝑃 ∨ (𝐺‘𝑃))) | 
| 37 | 14, 5, 6 | latlej1 18494 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) | 
| 38 | 16, 20, 32, 37 | syl3anc 1372 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → 𝑃 ≤ (𝑃 ∨ 𝑄)) | 
| 39 | 14, 9, 10 | ltrncl 40128 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝑄 ∈ (Base‘𝐾)) → (𝐺‘𝑄) ∈ (Base‘𝐾)) | 
| 40 | 2, 3, 32, 39 | syl3anc 1372 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → (𝐺‘𝑄) ∈ (Base‘𝐾)) | 
| 41 | 14, 5, 6 | latlej1 18494 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝐺‘𝑃) ∈ (Base‘𝐾) ∧ (𝐺‘𝑄) ∈ (Base‘𝐾)) → (𝐺‘𝑃) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) | 
| 42 | 16, 22, 40, 41 | syl3anc 1372 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → (𝐺‘𝑃) ≤ ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) | 
| 43 |  | simpr 484 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) | 
| 44 | 42, 43 | breqtrrd 5170 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → (𝐺‘𝑃) ≤ (𝑃 ∨ 𝑄)) | 
| 45 | 14, 5, 6 | latjle12 18496 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐺‘𝑃) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ 𝑄)) ↔ (𝑃 ∨ (𝐺‘𝑃)) ≤ (𝑃 ∨ 𝑄))) | 
| 46 | 16, 20, 22, 34, 45 | syl13anc 1373 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → ((𝑃 ≤ (𝑃 ∨ 𝑄) ∧ (𝐺‘𝑃) ≤ (𝑃 ∨ 𝑄)) ↔ (𝑃 ∨ (𝐺‘𝑃)) ≤ (𝑃 ∨ 𝑄))) | 
| 47 | 38, 44, 46 | mpbi2and 712 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → (𝑃 ∨ (𝐺‘𝑃)) ≤ (𝑃 ∨ 𝑄)) | 
| 48 | 14, 5, 16, 29, 24, 34, 36, 47 | lattrd 18492 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → ((𝑃 ∨ (𝐺‘𝑃)) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) | 
| 49 | 13, 48 | eqbrtrd 5164 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) ∧ (𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) → (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄)) | 
| 50 | 49 | ex 412 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) → (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) | 
| 51 | 50 | necon3bd 2953 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄) → (𝑃 ∨ 𝑄) ≠ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)))) | 
| 52 | 1, 51 | mpd 15 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑄) ≠ ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) |