Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg11b Structured version   Visualization version   GIF version

Theorem cdlemg11b 40607
Description: TODO: FIX COMMENT. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
cdlemg8.l = (le‘𝐾)
cdlemg8.j = (join‘𝐾)
cdlemg8.m = (meet‘𝐾)
cdlemg8.a 𝐴 = (Atoms‘𝐾)
cdlemg8.h 𝐻 = (LHyp‘𝐾)
cdlemg8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg10.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg11b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄)))

Proof of Theorem cdlemg11b
StepHypRef Expression
1 simp33 1212 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ¬ (𝑅𝐺) (𝑃 𝑄))
2 simpl1 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simpl31 1255 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐺𝑇)
4 simpl2l 1227 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 cdlemg8.l . . . . . . 7 = (le‘𝐾)
6 cdlemg8.j . . . . . . 7 = (join‘𝐾)
7 cdlemg8.m . . . . . . 7 = (meet‘𝐾)
8 cdlemg8.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
9 cdlemg8.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
10 cdlemg8.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 cdlemg10.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
125, 6, 7, 8, 9, 10, 11trlval2 40128 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
132, 3, 4, 12syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
14 eqid 2735 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
15 simpl1l 1225 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐾 ∈ HL)
1615hllatd 39328 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐾 ∈ Lat)
17 simp2ll 1241 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝑃𝐴)
1817adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃𝐴)
1914, 8atbase 39253 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2018, 19syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃 ∈ (Base‘𝐾))
2114, 9, 10ltrncl 40090 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃 ∈ (Base‘𝐾)) → (𝐺𝑃) ∈ (Base‘𝐾))
222, 3, 20, 21syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) ∈ (Base‘𝐾))
2314, 6latjcl 18447 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
2416, 20, 22, 23syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
25 simpl1r 1226 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑊𝐻)
2614, 9lhpbase 39963 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑊 ∈ (Base‘𝐾))
2814, 7latmcl 18448 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
2916, 24, 27, 28syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
30 simpl2r 1228 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑄𝐴)
3114, 8atbase 39253 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3230, 31syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑄 ∈ (Base‘𝐾))
3314, 6latjcl 18447 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
3416, 20, 32, 33syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
3514, 5, 7latmle1 18472 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 (𝐺𝑃)))
3616, 24, 27, 35syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 (𝐺𝑃)))
3714, 5, 6latlej1 18456 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 (𝑃 𝑄))
3816, 20, 32, 37syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃 (𝑃 𝑄))
3914, 9, 10ltrncl 40090 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑄 ∈ (Base‘𝐾)) → (𝐺𝑄) ∈ (Base‘𝐾))
402, 3, 32, 39syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑄) ∈ (Base‘𝐾))
4114, 5, 6latlej1 18456 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝐺𝑄) ∈ (Base‘𝐾)) → (𝐺𝑃) ((𝐺𝑃) (𝐺𝑄)))
4216, 22, 40, 41syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) ((𝐺𝑃) (𝐺𝑄)))
43 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄)))
4442, 43breqtrrd 5147 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) (𝑃 𝑄))
4514, 5, 6latjle12 18458 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑄) ∧ (𝐺𝑃) (𝑃 𝑄)) ↔ (𝑃 (𝐺𝑃)) (𝑃 𝑄)))
4616, 20, 22, 34, 45syl13anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝑃 𝑄) ∧ (𝐺𝑃) (𝑃 𝑄)) ↔ (𝑃 (𝐺𝑃)) (𝑃 𝑄)))
4738, 44, 46mpbi2and 712 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 (𝐺𝑃)) (𝑃 𝑄))
4814, 5, 16, 29, 24, 34, 36, 47lattrd 18454 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 𝑄))
4913, 48eqbrtrd 5141 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑅𝐺) (𝑃 𝑄))
5049ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄)) → (𝑅𝐺) (𝑃 𝑄)))
5150necon3bd 2946 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (¬ (𝑅𝐺) (𝑃 𝑄) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄))))
521, 51mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6530  (class class class)co 7403  Basecbs 17226  lecple 17276  joincjn 18321  meetcmee 18322  Latclat 18439  Atomscatm 39227  HLchlt 39314  LHypclh 39949  LTrncltrn 40066  trLctrl 40123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-map 8840  df-poset 18323  df-lub 18354  df-glb 18355  df-join 18356  df-meet 18357  df-lat 18440  df-ats 39231  df-atl 39262  df-cvlat 39286  df-hlat 39315  df-lhyp 39953  df-laut 39954  df-ldil 40069  df-ltrn 40070  df-trl 40124
This theorem is referenced by:  cdlemg12b  40609
  Copyright terms: Public domain W3C validator