Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg11b Structured version   Visualization version   GIF version

Theorem cdlemg11b 37938
Description: TODO: FIX COMMENT. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
cdlemg8.l = (le‘𝐾)
cdlemg8.j = (join‘𝐾)
cdlemg8.m = (meet‘𝐾)
cdlemg8.a 𝐴 = (Atoms‘𝐾)
cdlemg8.h 𝐻 = (LHyp‘𝐾)
cdlemg8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg10.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg11b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄)))

Proof of Theorem cdlemg11b
StepHypRef Expression
1 simp33 1208 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ¬ (𝑅𝐺) (𝑃 𝑄))
2 simpl1 1188 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simpl31 1251 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐺𝑇)
4 simpl2l 1223 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 cdlemg8.l . . . . . . 7 = (le‘𝐾)
6 cdlemg8.j . . . . . . 7 = (join‘𝐾)
7 cdlemg8.m . . . . . . 7 = (meet‘𝐾)
8 cdlemg8.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
9 cdlemg8.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
10 cdlemg8.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 cdlemg10.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
125, 6, 7, 8, 9, 10, 11trlval2 37459 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
132, 3, 4, 12syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
14 eqid 2798 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
15 simpl1l 1221 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐾 ∈ HL)
1615hllatd 36660 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐾 ∈ Lat)
17 simp2ll 1237 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝑃𝐴)
1817adantr 484 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃𝐴)
1914, 8atbase 36585 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2018, 19syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃 ∈ (Base‘𝐾))
2114, 9, 10ltrncl 37421 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃 ∈ (Base‘𝐾)) → (𝐺𝑃) ∈ (Base‘𝐾))
222, 3, 20, 21syl3anc 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) ∈ (Base‘𝐾))
2314, 6latjcl 17653 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
2416, 20, 22, 23syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
25 simpl1r 1222 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑊𝐻)
2614, 9lhpbase 37294 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑊 ∈ (Base‘𝐾))
2814, 7latmcl 17654 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
2916, 24, 27, 28syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
30 simpl2r 1224 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑄𝐴)
3114, 8atbase 36585 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3230, 31syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑄 ∈ (Base‘𝐾))
3314, 6latjcl 17653 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
3416, 20, 32, 33syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
3514, 5, 7latmle1 17678 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 (𝐺𝑃)))
3616, 24, 27, 35syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 (𝐺𝑃)))
3714, 5, 6latlej1 17662 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 (𝑃 𝑄))
3816, 20, 32, 37syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃 (𝑃 𝑄))
3914, 9, 10ltrncl 37421 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑄 ∈ (Base‘𝐾)) → (𝐺𝑄) ∈ (Base‘𝐾))
402, 3, 32, 39syl3anc 1368 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑄) ∈ (Base‘𝐾))
4114, 5, 6latlej1 17662 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝐺𝑄) ∈ (Base‘𝐾)) → (𝐺𝑃) ((𝐺𝑃) (𝐺𝑄)))
4216, 22, 40, 41syl3anc 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) ((𝐺𝑃) (𝐺𝑄)))
43 simpr 488 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄)))
4442, 43breqtrrd 5058 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) (𝑃 𝑄))
4514, 5, 6latjle12 17664 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑄) ∧ (𝐺𝑃) (𝑃 𝑄)) ↔ (𝑃 (𝐺𝑃)) (𝑃 𝑄)))
4616, 20, 22, 34, 45syl13anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝑃 𝑄) ∧ (𝐺𝑃) (𝑃 𝑄)) ↔ (𝑃 (𝐺𝑃)) (𝑃 𝑄)))
4738, 44, 46mpbi2and 711 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 (𝐺𝑃)) (𝑃 𝑄))
4814, 5, 16, 29, 24, 34, 36, 47lattrd 17660 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 𝑄))
4913, 48eqbrtrd 5052 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑅𝐺) (𝑃 𝑄))
5049ex 416 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄)) → (𝑅𝐺) (𝑃 𝑄)))
5150necon3bd 3001 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (¬ (𝑅𝐺) (𝑃 𝑄) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄))))
521, 51mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  Latclat 17647  Atomscatm 36559  HLchlt 36646  LHypclh 37280  LTrncltrn 37397  trLctrl 37454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-poset 17548  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-lat 17648  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-lhyp 37284  df-laut 37285  df-ldil 37400  df-ltrn 37401  df-trl 37455
This theorem is referenced by:  cdlemg12b  37940
  Copyright terms: Public domain W3C validator