Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg11b Structured version   Visualization version   GIF version

Theorem cdlemg11b 36801
Description: TODO: FIX COMMENT. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
cdlemg8.l = (le‘𝐾)
cdlemg8.j = (join‘𝐾)
cdlemg8.m = (meet‘𝐾)
cdlemg8.a 𝐴 = (Atoms‘𝐾)
cdlemg8.h 𝐻 = (LHyp‘𝐾)
cdlemg8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg10.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg11b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄)))

Proof of Theorem cdlemg11b
StepHypRef Expression
1 simp33 1225 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ¬ (𝑅𝐺) (𝑃 𝑄))
2 simpl1 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simpl31 1298 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐺𝑇)
4 simpl2l 1254 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 cdlemg8.l . . . . . . 7 = (le‘𝐾)
6 cdlemg8.j . . . . . . 7 = (join‘𝐾)
7 cdlemg8.m . . . . . . 7 = (meet‘𝐾)
8 cdlemg8.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
9 cdlemg8.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
10 cdlemg8.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 cdlemg10.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
125, 6, 7, 8, 9, 10, 11trlval2 36322 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
132, 3, 4, 12syl3anc 1439 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
14 eqid 2778 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
15 simpl1l 1250 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐾 ∈ HL)
1615hllatd 35523 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐾 ∈ Lat)
17 simp2ll 1278 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝑃𝐴)
1817adantr 474 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃𝐴)
1914, 8atbase 35448 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2018, 19syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃 ∈ (Base‘𝐾))
2114, 9, 10ltrncl 36284 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃 ∈ (Base‘𝐾)) → (𝐺𝑃) ∈ (Base‘𝐾))
222, 3, 20, 21syl3anc 1439 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) ∈ (Base‘𝐾))
2314, 6latjcl 17441 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
2416, 20, 22, 23syl3anc 1439 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
25 simpl1r 1252 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑊𝐻)
2614, 9lhpbase 36157 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑊 ∈ (Base‘𝐾))
2814, 7latmcl 17442 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
2916, 24, 27, 28syl3anc 1439 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
30 simpl2r 1256 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑄𝐴)
3114, 8atbase 35448 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3230, 31syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑄 ∈ (Base‘𝐾))
3314, 6latjcl 17441 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
3416, 20, 32, 33syl3anc 1439 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
3514, 5, 7latmle1 17466 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 (𝐺𝑃)))
3616, 24, 27, 35syl3anc 1439 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 (𝐺𝑃)))
3714, 5, 6latlej1 17450 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 (𝑃 𝑄))
3816, 20, 32, 37syl3anc 1439 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃 (𝑃 𝑄))
3914, 9, 10ltrncl 36284 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑄 ∈ (Base‘𝐾)) → (𝐺𝑄) ∈ (Base‘𝐾))
402, 3, 32, 39syl3anc 1439 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑄) ∈ (Base‘𝐾))
4114, 5, 6latlej1 17450 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝐺𝑄) ∈ (Base‘𝐾)) → (𝐺𝑃) ((𝐺𝑃) (𝐺𝑄)))
4216, 22, 40, 41syl3anc 1439 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) ((𝐺𝑃) (𝐺𝑄)))
43 simpr 479 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄)))
4442, 43breqtrrd 4916 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) (𝑃 𝑄))
4514, 5, 6latjle12 17452 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑄) ∧ (𝐺𝑃) (𝑃 𝑄)) ↔ (𝑃 (𝐺𝑃)) (𝑃 𝑄)))
4616, 20, 22, 34, 45syl13anc 1440 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝑃 𝑄) ∧ (𝐺𝑃) (𝑃 𝑄)) ↔ (𝑃 (𝐺𝑃)) (𝑃 𝑄)))
4738, 44, 46mpbi2and 702 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 (𝐺𝑃)) (𝑃 𝑄))
4814, 5, 16, 29, 24, 34, 36, 47lattrd 17448 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 𝑄))
4913, 48eqbrtrd 4910 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑅𝐺) (𝑃 𝑄))
5049ex 403 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄)) → (𝑅𝐺) (𝑃 𝑄)))
5150necon3bd 2983 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (¬ (𝑅𝐺) (𝑃 𝑄) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄))))
521, 51mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969   class class class wbr 4888  cfv 6137  (class class class)co 6924  Basecbs 16259  lecple 16349  joincjn 17334  meetcmee 17335  Latclat 17435  Atomscatm 35422  HLchlt 35509  LHypclh 36143  LTrncltrn 36260  trLctrl 36317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-map 8144  df-poset 17336  df-lub 17364  df-glb 17365  df-join 17366  df-meet 17367  df-lat 17436  df-ats 35426  df-atl 35457  df-cvlat 35481  df-hlat 35510  df-lhyp 36147  df-laut 36148  df-ldil 36263  df-ltrn 36264  df-trl 36318
This theorem is referenced by:  cdlemg12b  36803
  Copyright terms: Public domain W3C validator