Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg11b Structured version   Visualization version   GIF version

Theorem cdlemg11b 38583
Description: TODO: FIX COMMENT. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
cdlemg8.l = (le‘𝐾)
cdlemg8.j = (join‘𝐾)
cdlemg8.m = (meet‘𝐾)
cdlemg8.a 𝐴 = (Atoms‘𝐾)
cdlemg8.h 𝐻 = (LHyp‘𝐾)
cdlemg8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg10.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg11b (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄)))

Proof of Theorem cdlemg11b
StepHypRef Expression
1 simp33 1209 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ¬ (𝑅𝐺) (𝑃 𝑄))
2 simpl1 1189 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simpl31 1252 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐺𝑇)
4 simpl2l 1224 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 cdlemg8.l . . . . . . 7 = (le‘𝐾)
6 cdlemg8.j . . . . . . 7 = (join‘𝐾)
7 cdlemg8.m . . . . . . 7 = (meet‘𝐾)
8 cdlemg8.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
9 cdlemg8.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
10 cdlemg8.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 cdlemg10.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
125, 6, 7, 8, 9, 10, 11trlval2 38104 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
132, 3, 4, 12syl3anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
14 eqid 2738 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
15 simpl1l 1222 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐾 ∈ HL)
1615hllatd 37305 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝐾 ∈ Lat)
17 simp2ll 1238 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝑃𝐴)
1817adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃𝐴)
1914, 8atbase 37230 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2018, 19syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃 ∈ (Base‘𝐾))
2114, 9, 10ltrncl 38066 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃 ∈ (Base‘𝐾)) → (𝐺𝑃) ∈ (Base‘𝐾))
222, 3, 20, 21syl3anc 1369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) ∈ (Base‘𝐾))
2314, 6latjcl 18072 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾)) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
2416, 20, 22, 23syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
25 simpl1r 1223 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑊𝐻)
2614, 9lhpbase 37939 . . . . . . . 8 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑊 ∈ (Base‘𝐾))
2814, 7latmcl 18073 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
2916, 24, 27, 28syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) ∈ (Base‘𝐾))
30 simpl2r 1225 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑄𝐴)
3114, 8atbase 37230 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3230, 31syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑄 ∈ (Base‘𝐾))
3314, 6latjcl 18072 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
3416, 20, 32, 33syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
3514, 5, 7latmle1 18097 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 (𝐺𝑃)))
3616, 24, 27, 35syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 (𝐺𝑃)))
3714, 5, 6latlej1 18081 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 (𝑃 𝑄))
3816, 20, 32, 37syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → 𝑃 (𝑃 𝑄))
3914, 9, 10ltrncl 38066 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑄 ∈ (Base‘𝐾)) → (𝐺𝑄) ∈ (Base‘𝐾))
402, 3, 32, 39syl3anc 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑄) ∈ (Base‘𝐾))
4114, 5, 6latlej1 18081 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝐺𝑄) ∈ (Base‘𝐾)) → (𝐺𝑃) ((𝐺𝑃) (𝐺𝑄)))
4216, 22, 40, 41syl3anc 1369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) ((𝐺𝑃) (𝐺𝑄)))
43 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄)))
4442, 43breqtrrd 5098 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝐺𝑃) (𝑃 𝑄))
4514, 5, 6latjle12 18083 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐺𝑃) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑄) ∧ (𝐺𝑃) (𝑃 𝑄)) ↔ (𝑃 (𝐺𝑃)) (𝑃 𝑄)))
4616, 20, 22, 34, 45syl13anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝑃 𝑄) ∧ (𝐺𝑃) (𝑃 𝑄)) ↔ (𝑃 (𝐺𝑃)) (𝑃 𝑄)))
4738, 44, 46mpbi2and 708 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑃 (𝐺𝑃)) (𝑃 𝑄))
4814, 5, 16, 29, 24, 34, 36, 47lattrd 18079 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → ((𝑃 (𝐺𝑃)) 𝑊) (𝑃 𝑄))
4913, 48eqbrtrd 5092 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄))) → (𝑅𝐺) (𝑃 𝑄))
5049ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 𝑄) = ((𝐺𝑃) (𝐺𝑄)) → (𝑅𝐺) (𝑃 𝑄)))
5150necon3bd 2956 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (¬ (𝑅𝐺) (𝑃 𝑄) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄))))
521, 51mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝐺𝑇𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑃 𝑄) ≠ ((𝐺𝑃) (𝐺𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Latclat 18064  Atomscatm 37204  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  trLctrl 38099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-poset 17946  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-lat 18065  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100
This theorem is referenced by:  cdlemg12b  38585
  Copyright terms: Public domain W3C validator