![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl23 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl23 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1191 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
2 | 1 | 3ad2antl2 1184 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: frrlem10 8282 mulgdirlem 19021 nosupbnd2lem1 27454 noinfbnd2lem1 27469 brbtwn2 28430 ax5seglem3a 28455 ax5seg 28463 axpasch 28466 axeuclid 28488 br8d 32106 br8 35030 cgrextend 35284 segconeq 35286 segconeu 35287 trisegint 35304 ifscgr 35320 cgrsub 35321 cgrxfr 35331 lineext 35352 seglecgr12im 35386 segletr 35390 lineunray 35423 lineelsb2 35424 cvrcmp 38456 cvlsupr2 38516 atcvrj2b 38606 atexchcvrN 38614 3atlem3 38659 3atlem5 38661 lplnnle2at 38715 lplnllnneN 38730 4atlem3 38770 4atlem10b 38779 4atlem12 38786 2llnma3r 38962 paddasslem4 38997 paddasslem7 39000 paddasslem8 39001 paddasslem12 39005 paddasslem13 39006 paddasslem15 39008 pmodlem1 39020 pmodlem2 39021 atmod1i1m 39032 llnexchb2lem 39042 4atex2 39251 ltrnatlw 39357 arglem1N 39364 cdlemd4 39375 cdlemd5 39376 cdleme16 39459 cdleme20 39498 cdleme21k 39512 cdleme27N 39543 cdleme28c 39546 cdleme43fsv1snlem 39594 cdleme38n 39638 cdleme40n 39642 cdleme41snaw 39650 cdlemg6c 39794 cdlemg8c 39803 cdlemg8 39805 cdlemg12e 39821 cdlemg16ALTN 39832 cdlemg16zz 39834 cdlemg18a 39852 cdlemg20 39859 cdlemg22 39861 cdlemg37 39863 cdlemg31d 39874 cdlemg33 39885 cdlemg38 39889 cdlemg44b 39906 cdlemk33N 40083 cdlemk34 40084 cdlemk38 40089 cdlemk35s-id 40112 cdlemk39s-id 40114 cdlemk53b 40130 cdlemk53 40131 cdlemk55 40135 cdlemk35u 40138 cdlemk55u 40140 cdleml3N 40152 cdlemn11pre 40384 |
Copyright terms: Public domain | W3C validator |