| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl23 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl23 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
| 2 | 1 | 3ad2antl2 1187 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: frrlem10 8294 mulgdirlem 19088 nosupbnd2lem1 27679 noinfbnd2lem1 27694 brbtwn2 28884 ax5seglem3a 28909 ax5seg 28917 axpasch 28920 axeuclid 28942 br8d 32590 br8 35773 cgrextend 36026 segconeq 36028 segconeu 36029 trisegint 36046 ifscgr 36062 cgrsub 36063 cgrxfr 36073 lineext 36094 seglecgr12im 36128 segletr 36132 lineunray 36165 lineelsb2 36166 cvrcmp 39301 cvlsupr2 39361 atcvrj2b 39451 atexchcvrN 39459 3atlem3 39504 3atlem5 39506 lplnnle2at 39560 lplnllnneN 39575 4atlem3 39615 4atlem10b 39624 4atlem12 39631 2llnma3r 39807 paddasslem4 39842 paddasslem7 39845 paddasslem8 39846 paddasslem12 39850 paddasslem13 39851 paddasslem15 39853 pmodlem1 39865 pmodlem2 39866 atmod1i1m 39877 llnexchb2lem 39887 4atex2 40096 ltrnatlw 40202 arglem1N 40209 cdlemd4 40220 cdlemd5 40221 cdleme16 40304 cdleme20 40343 cdleme21k 40357 cdleme27N 40388 cdleme28c 40391 cdleme43fsv1snlem 40439 cdleme38n 40483 cdleme40n 40487 cdleme41snaw 40495 cdlemg6c 40639 cdlemg8c 40648 cdlemg8 40650 cdlemg12e 40666 cdlemg16ALTN 40677 cdlemg16zz 40679 cdlemg18a 40697 cdlemg20 40704 cdlemg22 40706 cdlemg37 40708 cdlemg31d 40719 cdlemg33 40730 cdlemg38 40734 cdlemg44b 40751 cdlemk33N 40928 cdlemk34 40929 cdlemk38 40934 cdlemk35s-id 40957 cdlemk39s-id 40959 cdlemk53b 40975 cdlemk53 40976 cdlemk55 40980 cdlemk35u 40983 cdlemk55u 40985 cdleml3N 40997 cdlemn11pre 41229 aks6d1c1 42129 |
| Copyright terms: Public domain | W3C validator |