![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl23 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl23 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
2 | 1 | 3ad2antl2 1185 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: frrlem10 8319 mulgdirlem 19136 nosupbnd2lem1 27775 noinfbnd2lem1 27790 brbtwn2 28935 ax5seglem3a 28960 ax5seg 28968 axpasch 28971 axeuclid 28993 br8d 32630 br8 35736 cgrextend 35990 segconeq 35992 segconeu 35993 trisegint 36010 ifscgr 36026 cgrsub 36027 cgrxfr 36037 lineext 36058 seglecgr12im 36092 segletr 36096 lineunray 36129 lineelsb2 36130 cvrcmp 39265 cvlsupr2 39325 atcvrj2b 39415 atexchcvrN 39423 3atlem3 39468 3atlem5 39470 lplnnle2at 39524 lplnllnneN 39539 4atlem3 39579 4atlem10b 39588 4atlem12 39595 2llnma3r 39771 paddasslem4 39806 paddasslem7 39809 paddasslem8 39810 paddasslem12 39814 paddasslem13 39815 paddasslem15 39817 pmodlem1 39829 pmodlem2 39830 atmod1i1m 39841 llnexchb2lem 39851 4atex2 40060 ltrnatlw 40166 arglem1N 40173 cdlemd4 40184 cdlemd5 40185 cdleme16 40268 cdleme20 40307 cdleme21k 40321 cdleme27N 40352 cdleme28c 40355 cdleme43fsv1snlem 40403 cdleme38n 40447 cdleme40n 40451 cdleme41snaw 40459 cdlemg6c 40603 cdlemg8c 40612 cdlemg8 40614 cdlemg12e 40630 cdlemg16ALTN 40641 cdlemg16zz 40643 cdlemg18a 40661 cdlemg20 40668 cdlemg22 40670 cdlemg37 40672 cdlemg31d 40683 cdlemg33 40694 cdlemg38 40698 cdlemg44b 40715 cdlemk33N 40892 cdlemk34 40893 cdlemk38 40898 cdlemk35s-id 40921 cdlemk39s-id 40923 cdlemk53b 40939 cdlemk53 40940 cdlemk55 40944 cdlemk35u 40947 cdlemk55u 40949 cdleml3N 40961 cdlemn11pre 41193 aks6d1c1 42098 |
Copyright terms: Public domain | W3C validator |