| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl23 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl23 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
| 2 | 1 | 3ad2antl2 1186 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: frrlem10 8302 mulgdirlem 19093 nosupbnd2lem1 27697 noinfbnd2lem1 27712 brbtwn2 28851 ax5seglem3a 28876 ax5seg 28884 axpasch 28887 axeuclid 28909 br8d 32558 br8 35731 cgrextend 35984 segconeq 35986 segconeu 35987 trisegint 36004 ifscgr 36020 cgrsub 36021 cgrxfr 36031 lineext 36052 seglecgr12im 36086 segletr 36090 lineunray 36123 lineelsb2 36124 cvrcmp 39259 cvlsupr2 39319 atcvrj2b 39409 atexchcvrN 39417 3atlem3 39462 3atlem5 39464 lplnnle2at 39518 lplnllnneN 39533 4atlem3 39573 4atlem10b 39582 4atlem12 39589 2llnma3r 39765 paddasslem4 39800 paddasslem7 39803 paddasslem8 39804 paddasslem12 39808 paddasslem13 39809 paddasslem15 39811 pmodlem1 39823 pmodlem2 39824 atmod1i1m 39835 llnexchb2lem 39845 4atex2 40054 ltrnatlw 40160 arglem1N 40167 cdlemd4 40178 cdlemd5 40179 cdleme16 40262 cdleme20 40301 cdleme21k 40315 cdleme27N 40346 cdleme28c 40349 cdleme43fsv1snlem 40397 cdleme38n 40441 cdleme40n 40445 cdleme41snaw 40453 cdlemg6c 40597 cdlemg8c 40606 cdlemg8 40608 cdlemg12e 40624 cdlemg16ALTN 40635 cdlemg16zz 40637 cdlemg18a 40655 cdlemg20 40662 cdlemg22 40664 cdlemg37 40666 cdlemg31d 40677 cdlemg33 40688 cdlemg38 40692 cdlemg44b 40709 cdlemk33N 40886 cdlemk34 40887 cdlemk38 40892 cdlemk35s-id 40915 cdlemk39s-id 40917 cdlemk53b 40933 cdlemk53 40934 cdlemk55 40938 cdlemk35u 40941 cdlemk55u 40943 cdleml3N 40955 cdlemn11pre 41187 aks6d1c1 42092 |
| Copyright terms: Public domain | W3C validator |