Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl23 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl23 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1191 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
2 | 1 | 3ad2antl2 1184 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: frrlem10 8095 mulgdirlem 18715 brbtwn2 27254 ax5seglem3a 27279 ax5seg 27287 axpasch 27290 axeuclid 27312 br8d 30929 br8 33702 nosupbnd2lem1 33897 noinfbnd2lem1 33912 cgrextend 34289 segconeq 34291 segconeu 34292 trisegint 34309 ifscgr 34325 cgrsub 34326 cgrxfr 34336 lineext 34357 seglecgr12im 34391 segletr 34395 lineunray 34428 lineelsb2 34429 cvrcmp 37276 cvlsupr2 37336 atcvrj2b 37425 atexchcvrN 37433 3atlem3 37478 3atlem5 37480 lplnnle2at 37534 lplnllnneN 37549 4atlem3 37589 4atlem10b 37598 4atlem12 37605 2llnma3r 37781 paddasslem4 37816 paddasslem7 37819 paddasslem8 37820 paddasslem12 37824 paddasslem13 37825 paddasslem15 37827 pmodlem1 37839 pmodlem2 37840 atmod1i1m 37851 llnexchb2lem 37861 4atex2 38070 ltrnatlw 38176 arglem1N 38183 cdlemd4 38194 cdlemd5 38195 cdleme16 38278 cdleme20 38317 cdleme21k 38331 cdleme27N 38362 cdleme28c 38365 cdleme43fsv1snlem 38413 cdleme38n 38457 cdleme40n 38461 cdleme41snaw 38469 cdlemg6c 38613 cdlemg8c 38622 cdlemg8 38624 cdlemg12e 38640 cdlemg16ALTN 38651 cdlemg16zz 38653 cdlemg18a 38671 cdlemg20 38678 cdlemg22 38680 cdlemg37 38682 cdlemg31d 38693 cdlemg33 38704 cdlemg38 38708 cdlemg44b 38725 cdlemk33N 38902 cdlemk34 38903 cdlemk38 38908 cdlemk35s-id 38931 cdlemk39s-id 38933 cdlemk53b 38949 cdlemk53 38950 cdlemk55 38954 cdlemk35u 38957 cdlemk55u 38959 cdleml3N 38971 cdlemn11pre 39203 |
Copyright terms: Public domain | W3C validator |