| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl23 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl23 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
| 2 | 1 | 3ad2antl2 1187 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: frrlem10 8225 mulgdirlem 19015 nosupbnd2lem1 27652 noinfbnd2lem1 27667 brbtwn2 28881 ax5seglem3a 28906 ax5seg 28914 axpasch 28917 axeuclid 28939 br8d 32586 br8 35788 cgrextend 36041 segconeq 36043 segconeu 36044 trisegint 36061 ifscgr 36077 cgrsub 36078 cgrxfr 36088 lineext 36109 seglecgr12im 36143 segletr 36147 lineunray 36180 lineelsb2 36181 cvrcmp 39321 cvlsupr2 39381 atcvrj2b 39470 atexchcvrN 39478 3atlem3 39523 3atlem5 39525 lplnnle2at 39579 lplnllnneN 39594 4atlem3 39634 4atlem10b 39643 4atlem12 39650 2llnma3r 39826 paddasslem4 39861 paddasslem7 39864 paddasslem8 39865 paddasslem12 39869 paddasslem13 39870 paddasslem15 39872 pmodlem1 39884 pmodlem2 39885 atmod1i1m 39896 llnexchb2lem 39906 4atex2 40115 ltrnatlw 40221 arglem1N 40228 cdlemd4 40239 cdlemd5 40240 cdleme16 40323 cdleme20 40362 cdleme21k 40376 cdleme27N 40407 cdleme28c 40410 cdleme43fsv1snlem 40458 cdleme38n 40502 cdleme40n 40506 cdleme41snaw 40514 cdlemg6c 40658 cdlemg8c 40667 cdlemg8 40669 cdlemg12e 40685 cdlemg16ALTN 40696 cdlemg16zz 40698 cdlemg18a 40716 cdlemg20 40723 cdlemg22 40725 cdlemg37 40727 cdlemg31d 40738 cdlemg33 40749 cdlemg38 40753 cdlemg44b 40770 cdlemk33N 40947 cdlemk34 40948 cdlemk38 40953 cdlemk35s-id 40976 cdlemk39s-id 40978 cdlemk53b 40994 cdlemk53 40995 cdlemk55 40999 cdlemk35u 41002 cdlemk55u 41004 cdleml3N 41016 cdlemn11pre 41248 aks6d1c1 42148 |
| Copyright terms: Public domain | W3C validator |