| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl23 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl23 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
| 2 | 1 | 3ad2antl2 1187 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: frrlem10 8231 mulgdirlem 19020 nosupbnd2lem1 27655 noinfbnd2lem1 27670 brbtwn2 28885 ax5seglem3a 28910 ax5seg 28918 axpasch 28921 axeuclid 28943 br8d 32593 br8 35821 cgrextend 36073 segconeq 36075 segconeu 36076 trisegint 36093 ifscgr 36109 cgrsub 36110 cgrxfr 36120 lineext 36141 seglecgr12im 36175 segletr 36179 lineunray 36212 lineelsb2 36213 cvrcmp 39402 cvlsupr2 39462 atcvrj2b 39551 atexchcvrN 39559 3atlem3 39604 3atlem5 39606 lplnnle2at 39660 lplnllnneN 39675 4atlem3 39715 4atlem10b 39724 4atlem12 39731 2llnma3r 39907 paddasslem4 39942 paddasslem7 39945 paddasslem8 39946 paddasslem12 39950 paddasslem13 39951 paddasslem15 39953 pmodlem1 39965 pmodlem2 39966 atmod1i1m 39977 llnexchb2lem 39987 4atex2 40196 ltrnatlw 40302 arglem1N 40309 cdlemd4 40320 cdlemd5 40321 cdleme16 40404 cdleme20 40443 cdleme21k 40457 cdleme27N 40488 cdleme28c 40491 cdleme43fsv1snlem 40539 cdleme38n 40583 cdleme40n 40587 cdleme41snaw 40595 cdlemg6c 40739 cdlemg8c 40748 cdlemg8 40750 cdlemg12e 40766 cdlemg16ALTN 40777 cdlemg16zz 40779 cdlemg18a 40797 cdlemg20 40804 cdlemg22 40806 cdlemg37 40808 cdlemg31d 40819 cdlemg33 40830 cdlemg38 40834 cdlemg44b 40851 cdlemk33N 41028 cdlemk34 41029 cdlemk38 41034 cdlemk35s-id 41057 cdlemk39s-id 41059 cdlemk53b 41075 cdlemk53 41076 cdlemk55 41080 cdlemk35u 41083 cdlemk55u 41085 cdleml3N 41097 cdlemn11pre 41329 aks6d1c1 42229 |
| Copyright terms: Public domain | W3C validator |