Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl23 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl23 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜒) | |
2 | 1 | 3ad2antl2 1186 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: frrlem10 8142 mulgdirlem 18779 brbtwn2 27318 ax5seglem3a 27343 ax5seg 27351 axpasch 27354 axeuclid 27376 br8d 30995 br8 33768 nosupbnd2lem1 33963 noinfbnd2lem1 33978 cgrextend 34355 segconeq 34357 segconeu 34358 trisegint 34375 ifscgr 34391 cgrsub 34392 cgrxfr 34402 lineext 34423 seglecgr12im 34457 segletr 34461 lineunray 34494 lineelsb2 34495 cvrcmp 37339 cvlsupr2 37399 atcvrj2b 37488 atexchcvrN 37496 3atlem3 37541 3atlem5 37543 lplnnle2at 37597 lplnllnneN 37612 4atlem3 37652 4atlem10b 37661 4atlem12 37668 2llnma3r 37844 paddasslem4 37879 paddasslem7 37882 paddasslem8 37883 paddasslem12 37887 paddasslem13 37888 paddasslem15 37890 pmodlem1 37902 pmodlem2 37903 atmod1i1m 37914 llnexchb2lem 37924 4atex2 38133 ltrnatlw 38239 arglem1N 38246 cdlemd4 38257 cdlemd5 38258 cdleme16 38341 cdleme20 38380 cdleme21k 38394 cdleme27N 38425 cdleme28c 38428 cdleme43fsv1snlem 38476 cdleme38n 38520 cdleme40n 38524 cdleme41snaw 38532 cdlemg6c 38676 cdlemg8c 38685 cdlemg8 38687 cdlemg12e 38703 cdlemg16ALTN 38714 cdlemg16zz 38716 cdlemg18a 38734 cdlemg20 38741 cdlemg22 38743 cdlemg37 38745 cdlemg31d 38756 cdlemg33 38767 cdlemg38 38771 cdlemg44b 38788 cdlemk33N 38965 cdlemk34 38966 cdlemk38 38971 cdlemk35s-id 38994 cdlemk39s-id 38996 cdlemk53b 39012 cdlemk53 39013 cdlemk55 39017 cdlemk35u 39020 cdlemk55u 39022 cdleml3N 39034 cdlemn11pre 39266 |
Copyright terms: Public domain | W3C validator |