Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdvs1 Structured version   Visualization version   GIF version

Theorem slmdvs1 31469
Description: Scalar product with ring unit. (ax-hvmulid 29364 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdvs1.v 𝑉 = (Base‘𝑊)
slmdvs1.f 𝐹 = (Scalar‘𝑊)
slmdvs1.s · = ( ·𝑠𝑊)
slmdvs1.u 1 = (1r𝐹)
Assertion
Ref Expression
slmdvs1 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → ( 1 · 𝑋) = 𝑋)

Proof of Theorem slmdvs1
StepHypRef Expression
1 simpl 483 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 𝑊 ∈ SLMod)
2 slmdvs1.f . . . 4 𝐹 = (Scalar‘𝑊)
3 eqid 2740 . . . 4 (Base‘𝐹) = (Base‘𝐹)
4 slmdvs1.u . . . 4 1 = (1r𝐹)
52, 3, 4slmd1cl 31468 . . 3 (𝑊 ∈ SLMod → 1 ∈ (Base‘𝐹))
65adantr 481 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 1 ∈ (Base‘𝐹))
7 simpr 485 . 2 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → 𝑋𝑉)
8 slmdvs1.v . . . . 5 𝑉 = (Base‘𝑊)
9 eqid 2740 . . . . 5 (+g𝑊) = (+g𝑊)
10 slmdvs1.s . . . . 5 · = ( ·𝑠𝑊)
11 eqid 2740 . . . . 5 (0g𝑊) = (0g𝑊)
12 eqid 2740 . . . . 5 (+g𝐹) = (+g𝐹)
13 eqid 2740 . . . . 5 (.r𝐹) = (.r𝐹)
14 eqid 2740 . . . . 5 (0g𝐹) = (0g𝐹)
158, 9, 10, 11, 2, 3, 12, 13, 4, 14slmdlema 31452 . . . 4 ((𝑊 ∈ SLMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋𝑉𝑋𝑉)) → ((( 1 · 𝑋) ∈ 𝑉 ∧ ( 1 · (𝑋(+g𝑊)𝑋)) = (( 1 · 𝑋)(+g𝑊)( 1 · 𝑋)) ∧ (( 1 (+g𝐹) 1 ) · 𝑋) = (( 1 · 𝑋)(+g𝑊)( 1 · 𝑋))) ∧ ((( 1 (.r𝐹) 1 ) · 𝑋) = ( 1 · ( 1 · 𝑋)) ∧ ( 1 · 𝑋) = 𝑋 ∧ ((0g𝐹) · 𝑋) = (0g𝑊))))
1615simprd 496 . . 3 ((𝑊 ∈ SLMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋𝑉𝑋𝑉)) → ((( 1 (.r𝐹) 1 ) · 𝑋) = ( 1 · ( 1 · 𝑋)) ∧ ( 1 · 𝑋) = 𝑋 ∧ ((0g𝐹) · 𝑋) = (0g𝑊)))
1716simp2d 1142 . 2 ((𝑊 ∈ SLMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋𝑉𝑋𝑉)) → ( 1 · 𝑋) = 𝑋)
181, 6, 6, 7, 7, 17syl122anc 1378 1 ((𝑊 ∈ SLMod ∧ 𝑋𝑉) → ( 1 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  cfv 6432  (class class class)co 7271  Basecbs 16910  +gcplusg 16960  .rcmulr 16961  Scalarcsca 16963   ·𝑠 cvsca 16964  0gc0g 17148  1rcur 19735  SLModcslmd 31449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-plusg 16973  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-mgp 19719  df-ur 19736  df-srg 19740  df-slmd 31450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator