MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulasslem Structured version   Visualization version   GIF version

Theorem xmulasslem 13213
Description: Lemma for xmulass 13215. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xmulasslem.1 (𝑥 = 𝐷 → (𝜓𝑋 = 𝑌))
xmulasslem.2 (𝑥 = -𝑒𝐷 → (𝜓𝐸 = 𝐹))
xmulasslem.x (𝜑𝑋 ∈ ℝ*)
xmulasslem.y (𝜑𝑌 ∈ ℝ*)
xmulasslem.d (𝜑𝐷 ∈ ℝ*)
xmulasslem.ps ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝜓)
xmulasslem.0 (𝜑 → (𝑥 = 0 → 𝜓))
xmulasslem.e (𝜑𝐸 = -𝑒𝑋)
xmulasslem.f (𝜑𝐹 = -𝑒𝑌)
Assertion
Ref Expression
xmulasslem (𝜑𝑋 = 𝑌)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem xmulasslem
StepHypRef Expression
1 xmulasslem.d . . 3 (𝜑𝐷 ∈ ℝ*)
2 0xr 11210 . . 3 0 ∈ ℝ*
3 xrltso 13069 . . . 4 < Or ℝ*
4 solin 5574 . . . 4 (( < Or ℝ* ∧ (𝐷 ∈ ℝ* ∧ 0 ∈ ℝ*)) → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
53, 4mpan 689 . . 3 ((𝐷 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
61, 2, 5sylancl 587 . 2 (𝜑 → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
7 xlt0neg1 13147 . . . . . 6 (𝐷 ∈ ℝ* → (𝐷 < 0 ↔ 0 < -𝑒𝐷))
81, 7syl 17 . . . . 5 (𝜑 → (𝐷 < 0 ↔ 0 < -𝑒𝐷))
9 xnegcl 13141 . . . . . . 7 (𝐷 ∈ ℝ* → -𝑒𝐷 ∈ ℝ*)
101, 9syl 17 . . . . . 6 (𝜑 → -𝑒𝐷 ∈ ℝ*)
11 breq2 5113 . . . . . . . . 9 (𝑥 = -𝑒𝐷 → (0 < 𝑥 ↔ 0 < -𝑒𝐷))
12 xmulasslem.2 . . . . . . . . 9 (𝑥 = -𝑒𝐷 → (𝜓𝐸 = 𝐹))
1311, 12imbi12d 345 . . . . . . . 8 (𝑥 = -𝑒𝐷 → ((0 < 𝑥𝜓) ↔ (0 < -𝑒𝐷𝐸 = 𝐹)))
1413imbi2d 341 . . . . . . 7 (𝑥 = -𝑒𝐷 → ((𝜑 → (0 < 𝑥𝜓)) ↔ (𝜑 → (0 < -𝑒𝐷𝐸 = 𝐹))))
15 xmulasslem.ps . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝜓)
1615exp32 422 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ* → (0 < 𝑥𝜓)))
1716com12 32 . . . . . . 7 (𝑥 ∈ ℝ* → (𝜑 → (0 < 𝑥𝜓)))
1814, 17vtoclga 3536 . . . . . 6 (-𝑒𝐷 ∈ ℝ* → (𝜑 → (0 < -𝑒𝐷𝐸 = 𝐹)))
1910, 18mpcom 38 . . . . 5 (𝜑 → (0 < -𝑒𝐷𝐸 = 𝐹))
208, 19sylbid 239 . . . 4 (𝜑 → (𝐷 < 0 → 𝐸 = 𝐹))
21 xmulasslem.e . . . . . 6 (𝜑𝐸 = -𝑒𝑋)
22 xmulasslem.f . . . . . 6 (𝜑𝐹 = -𝑒𝑌)
2321, 22eqeq12d 2749 . . . . 5 (𝜑 → (𝐸 = 𝐹 ↔ -𝑒𝑋 = -𝑒𝑌))
24 xmulasslem.x . . . . . 6 (𝜑𝑋 ∈ ℝ*)
25 xmulasslem.y . . . . . 6 (𝜑𝑌 ∈ ℝ*)
26 xneg11 13143 . . . . . 6 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*) → (-𝑒𝑋 = -𝑒𝑌𝑋 = 𝑌))
2724, 25, 26syl2anc 585 . . . . 5 (𝜑 → (-𝑒𝑋 = -𝑒𝑌𝑋 = 𝑌))
2823, 27bitrd 279 . . . 4 (𝜑 → (𝐸 = 𝐹𝑋 = 𝑌))
2920, 28sylibd 238 . . 3 (𝜑 → (𝐷 < 0 → 𝑋 = 𝑌))
30 eqeq1 2737 . . . . . . 7 (𝑥 = 𝐷 → (𝑥 = 0 ↔ 𝐷 = 0))
31 xmulasslem.1 . . . . . . 7 (𝑥 = 𝐷 → (𝜓𝑋 = 𝑌))
3230, 31imbi12d 345 . . . . . 6 (𝑥 = 𝐷 → ((𝑥 = 0 → 𝜓) ↔ (𝐷 = 0 → 𝑋 = 𝑌)))
3332imbi2d 341 . . . . 5 (𝑥 = 𝐷 → ((𝜑 → (𝑥 = 0 → 𝜓)) ↔ (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌))))
34 xmulasslem.0 . . . . 5 (𝜑 → (𝑥 = 0 → 𝜓))
3533, 34vtoclg 3527 . . . 4 (𝐷 ∈ ℝ* → (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌)))
361, 35mpcom 38 . . 3 (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌))
37 breq2 5113 . . . . . . 7 (𝑥 = 𝐷 → (0 < 𝑥 ↔ 0 < 𝐷))
3837, 31imbi12d 345 . . . . . 6 (𝑥 = 𝐷 → ((0 < 𝑥𝜓) ↔ (0 < 𝐷𝑋 = 𝑌)))
3938imbi2d 341 . . . . 5 (𝑥 = 𝐷 → ((𝜑 → (0 < 𝑥𝜓)) ↔ (𝜑 → (0 < 𝐷𝑋 = 𝑌))))
4039, 17vtoclga 3536 . . . 4 (𝐷 ∈ ℝ* → (𝜑 → (0 < 𝐷𝑋 = 𝑌)))
411, 40mpcom 38 . . 3 (𝜑 → (0 < 𝐷𝑋 = 𝑌))
4229, 36, 413jaod 1429 . 2 (𝜑 → ((𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷) → 𝑋 = 𝑌))
436, 42mpd 15 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3o 1087   = wceq 1542  wcel 2107   class class class wbr 5109   Or wor 5548  0cc0 11059  *cxr 11196   < clt 11197  -𝑒cxne 13038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-xneg 13041
This theorem is referenced by:  xmulass  13215
  Copyright terms: Public domain W3C validator