MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulasslem Structured version   Visualization version   GIF version

Theorem xmulasslem 12900
Description: Lemma for xmulass 12902. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xmulasslem.1 (𝑥 = 𝐷 → (𝜓𝑋 = 𝑌))
xmulasslem.2 (𝑥 = -𝑒𝐷 → (𝜓𝐸 = 𝐹))
xmulasslem.x (𝜑𝑋 ∈ ℝ*)
xmulasslem.y (𝜑𝑌 ∈ ℝ*)
xmulasslem.d (𝜑𝐷 ∈ ℝ*)
xmulasslem.ps ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝜓)
xmulasslem.0 (𝜑 → (𝑥 = 0 → 𝜓))
xmulasslem.e (𝜑𝐸 = -𝑒𝑋)
xmulasslem.f (𝜑𝐹 = -𝑒𝑌)
Assertion
Ref Expression
xmulasslem (𝜑𝑋 = 𝑌)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem xmulasslem
StepHypRef Expression
1 xmulasslem.d . . 3 (𝜑𝐷 ∈ ℝ*)
2 0xr 10905 . . 3 0 ∈ ℝ*
3 xrltso 12756 . . . 4 < Or ℝ*
4 solin 5508 . . . 4 (( < Or ℝ* ∧ (𝐷 ∈ ℝ* ∧ 0 ∈ ℝ*)) → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
53, 4mpan 690 . . 3 ((𝐷 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
61, 2, 5sylancl 589 . 2 (𝜑 → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
7 xlt0neg1 12834 . . . . . 6 (𝐷 ∈ ℝ* → (𝐷 < 0 ↔ 0 < -𝑒𝐷))
81, 7syl 17 . . . . 5 (𝜑 → (𝐷 < 0 ↔ 0 < -𝑒𝐷))
9 xnegcl 12828 . . . . . . 7 (𝐷 ∈ ℝ* → -𝑒𝐷 ∈ ℝ*)
101, 9syl 17 . . . . . 6 (𝜑 → -𝑒𝐷 ∈ ℝ*)
11 breq2 5072 . . . . . . . . 9 (𝑥 = -𝑒𝐷 → (0 < 𝑥 ↔ 0 < -𝑒𝐷))
12 xmulasslem.2 . . . . . . . . 9 (𝑥 = -𝑒𝐷 → (𝜓𝐸 = 𝐹))
1311, 12imbi12d 348 . . . . . . . 8 (𝑥 = -𝑒𝐷 → ((0 < 𝑥𝜓) ↔ (0 < -𝑒𝐷𝐸 = 𝐹)))
1413imbi2d 344 . . . . . . 7 (𝑥 = -𝑒𝐷 → ((𝜑 → (0 < 𝑥𝜓)) ↔ (𝜑 → (0 < -𝑒𝐷𝐸 = 𝐹))))
15 xmulasslem.ps . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝜓)
1615exp32 424 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ* → (0 < 𝑥𝜓)))
1716com12 32 . . . . . . 7 (𝑥 ∈ ℝ* → (𝜑 → (0 < 𝑥𝜓)))
1814, 17vtoclga 3502 . . . . . 6 (-𝑒𝐷 ∈ ℝ* → (𝜑 → (0 < -𝑒𝐷𝐸 = 𝐹)))
1910, 18mpcom 38 . . . . 5 (𝜑 → (0 < -𝑒𝐷𝐸 = 𝐹))
208, 19sylbid 243 . . . 4 (𝜑 → (𝐷 < 0 → 𝐸 = 𝐹))
21 xmulasslem.e . . . . . 6 (𝜑𝐸 = -𝑒𝑋)
22 xmulasslem.f . . . . . 6 (𝜑𝐹 = -𝑒𝑌)
2321, 22eqeq12d 2754 . . . . 5 (𝜑 → (𝐸 = 𝐹 ↔ -𝑒𝑋 = -𝑒𝑌))
24 xmulasslem.x . . . . . 6 (𝜑𝑋 ∈ ℝ*)
25 xmulasslem.y . . . . . 6 (𝜑𝑌 ∈ ℝ*)
26 xneg11 12830 . . . . . 6 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*) → (-𝑒𝑋 = -𝑒𝑌𝑋 = 𝑌))
2724, 25, 26syl2anc 587 . . . . 5 (𝜑 → (-𝑒𝑋 = -𝑒𝑌𝑋 = 𝑌))
2823, 27bitrd 282 . . . 4 (𝜑 → (𝐸 = 𝐹𝑋 = 𝑌))
2920, 28sylibd 242 . . 3 (𝜑 → (𝐷 < 0 → 𝑋 = 𝑌))
30 eqeq1 2742 . . . . . . 7 (𝑥 = 𝐷 → (𝑥 = 0 ↔ 𝐷 = 0))
31 xmulasslem.1 . . . . . . 7 (𝑥 = 𝐷 → (𝜓𝑋 = 𝑌))
3230, 31imbi12d 348 . . . . . 6 (𝑥 = 𝐷 → ((𝑥 = 0 → 𝜓) ↔ (𝐷 = 0 → 𝑋 = 𝑌)))
3332imbi2d 344 . . . . 5 (𝑥 = 𝐷 → ((𝜑 → (𝑥 = 0 → 𝜓)) ↔ (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌))))
34 xmulasslem.0 . . . . 5 (𝜑 → (𝑥 = 0 → 𝜓))
3533, 34vtoclg 3494 . . . 4 (𝐷 ∈ ℝ* → (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌)))
361, 35mpcom 38 . . 3 (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌))
37 breq2 5072 . . . . . . 7 (𝑥 = 𝐷 → (0 < 𝑥 ↔ 0 < 𝐷))
3837, 31imbi12d 348 . . . . . 6 (𝑥 = 𝐷 → ((0 < 𝑥𝜓) ↔ (0 < 𝐷𝑋 = 𝑌)))
3938imbi2d 344 . . . . 5 (𝑥 = 𝐷 → ((𝜑 → (0 < 𝑥𝜓)) ↔ (𝜑 → (0 < 𝐷𝑋 = 𝑌))))
4039, 17vtoclga 3502 . . . 4 (𝐷 ∈ ℝ* → (𝜑 → (0 < 𝐷𝑋 = 𝑌)))
411, 40mpcom 38 . . 3 (𝜑 → (0 < 𝐷𝑋 = 𝑌))
4229, 36, 413jaod 1430 . 2 (𝜑 → ((𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷) → 𝑋 = 𝑌))
436, 42mpd 15 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3o 1088   = wceq 1543  wcel 2111   class class class wbr 5068   Or wor 5482  0cc0 10754  *cxr 10891   < clt 10892  -𝑒cxne 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-br 5069  df-opab 5131  df-mpt 5151  df-id 5470  df-po 5483  df-so 5484  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-xneg 12729
This theorem is referenced by:  xmulass  12902
  Copyright terms: Public domain W3C validator