MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulasslem Structured version   Visualization version   GIF version

Theorem xmulasslem 13019
Description: Lemma for xmulass 13021. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xmulasslem.1 (𝑥 = 𝐷 → (𝜓𝑋 = 𝑌))
xmulasslem.2 (𝑥 = -𝑒𝐷 → (𝜓𝐸 = 𝐹))
xmulasslem.x (𝜑𝑋 ∈ ℝ*)
xmulasslem.y (𝜑𝑌 ∈ ℝ*)
xmulasslem.d (𝜑𝐷 ∈ ℝ*)
xmulasslem.ps ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝜓)
xmulasslem.0 (𝜑 → (𝑥 = 0 → 𝜓))
xmulasslem.e (𝜑𝐸 = -𝑒𝑋)
xmulasslem.f (𝜑𝐹 = -𝑒𝑌)
Assertion
Ref Expression
xmulasslem (𝜑𝑋 = 𝑌)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem xmulasslem
StepHypRef Expression
1 xmulasslem.d . . 3 (𝜑𝐷 ∈ ℝ*)
2 0xr 11022 . . 3 0 ∈ ℝ*
3 xrltso 12875 . . . 4 < Or ℝ*
4 solin 5528 . . . 4 (( < Or ℝ* ∧ (𝐷 ∈ ℝ* ∧ 0 ∈ ℝ*)) → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
53, 4mpan 687 . . 3 ((𝐷 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
61, 2, 5sylancl 586 . 2 (𝜑 → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
7 xlt0neg1 12953 . . . . . 6 (𝐷 ∈ ℝ* → (𝐷 < 0 ↔ 0 < -𝑒𝐷))
81, 7syl 17 . . . . 5 (𝜑 → (𝐷 < 0 ↔ 0 < -𝑒𝐷))
9 xnegcl 12947 . . . . . . 7 (𝐷 ∈ ℝ* → -𝑒𝐷 ∈ ℝ*)
101, 9syl 17 . . . . . 6 (𝜑 → -𝑒𝐷 ∈ ℝ*)
11 breq2 5078 . . . . . . . . 9 (𝑥 = -𝑒𝐷 → (0 < 𝑥 ↔ 0 < -𝑒𝐷))
12 xmulasslem.2 . . . . . . . . 9 (𝑥 = -𝑒𝐷 → (𝜓𝐸 = 𝐹))
1311, 12imbi12d 345 . . . . . . . 8 (𝑥 = -𝑒𝐷 → ((0 < 𝑥𝜓) ↔ (0 < -𝑒𝐷𝐸 = 𝐹)))
1413imbi2d 341 . . . . . . 7 (𝑥 = -𝑒𝐷 → ((𝜑 → (0 < 𝑥𝜓)) ↔ (𝜑 → (0 < -𝑒𝐷𝐸 = 𝐹))))
15 xmulasslem.ps . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝜓)
1615exp32 421 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ* → (0 < 𝑥𝜓)))
1716com12 32 . . . . . . 7 (𝑥 ∈ ℝ* → (𝜑 → (0 < 𝑥𝜓)))
1814, 17vtoclga 3513 . . . . . 6 (-𝑒𝐷 ∈ ℝ* → (𝜑 → (0 < -𝑒𝐷𝐸 = 𝐹)))
1910, 18mpcom 38 . . . . 5 (𝜑 → (0 < -𝑒𝐷𝐸 = 𝐹))
208, 19sylbid 239 . . . 4 (𝜑 → (𝐷 < 0 → 𝐸 = 𝐹))
21 xmulasslem.e . . . . . 6 (𝜑𝐸 = -𝑒𝑋)
22 xmulasslem.f . . . . . 6 (𝜑𝐹 = -𝑒𝑌)
2321, 22eqeq12d 2754 . . . . 5 (𝜑 → (𝐸 = 𝐹 ↔ -𝑒𝑋 = -𝑒𝑌))
24 xmulasslem.x . . . . . 6 (𝜑𝑋 ∈ ℝ*)
25 xmulasslem.y . . . . . 6 (𝜑𝑌 ∈ ℝ*)
26 xneg11 12949 . . . . . 6 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*) → (-𝑒𝑋 = -𝑒𝑌𝑋 = 𝑌))
2724, 25, 26syl2anc 584 . . . . 5 (𝜑 → (-𝑒𝑋 = -𝑒𝑌𝑋 = 𝑌))
2823, 27bitrd 278 . . . 4 (𝜑 → (𝐸 = 𝐹𝑋 = 𝑌))
2920, 28sylibd 238 . . 3 (𝜑 → (𝐷 < 0 → 𝑋 = 𝑌))
30 eqeq1 2742 . . . . . . 7 (𝑥 = 𝐷 → (𝑥 = 0 ↔ 𝐷 = 0))
31 xmulasslem.1 . . . . . . 7 (𝑥 = 𝐷 → (𝜓𝑋 = 𝑌))
3230, 31imbi12d 345 . . . . . 6 (𝑥 = 𝐷 → ((𝑥 = 0 → 𝜓) ↔ (𝐷 = 0 → 𝑋 = 𝑌)))
3332imbi2d 341 . . . . 5 (𝑥 = 𝐷 → ((𝜑 → (𝑥 = 0 → 𝜓)) ↔ (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌))))
34 xmulasslem.0 . . . . 5 (𝜑 → (𝑥 = 0 → 𝜓))
3533, 34vtoclg 3505 . . . 4 (𝐷 ∈ ℝ* → (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌)))
361, 35mpcom 38 . . 3 (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌))
37 breq2 5078 . . . . . . 7 (𝑥 = 𝐷 → (0 < 𝑥 ↔ 0 < 𝐷))
3837, 31imbi12d 345 . . . . . 6 (𝑥 = 𝐷 → ((0 < 𝑥𝜓) ↔ (0 < 𝐷𝑋 = 𝑌)))
3938imbi2d 341 . . . . 5 (𝑥 = 𝐷 → ((𝜑 → (0 < 𝑥𝜓)) ↔ (𝜑 → (0 < 𝐷𝑋 = 𝑌))))
4039, 17vtoclga 3513 . . . 4 (𝐷 ∈ ℝ* → (𝜑 → (0 < 𝐷𝑋 = 𝑌)))
411, 40mpcom 38 . . 3 (𝜑 → (0 < 𝐷𝑋 = 𝑌))
4229, 36, 413jaod 1427 . 2 (𝜑 → ((𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷) → 𝑋 = 𝑌))
436, 42mpd 15 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3o 1085   = wceq 1539  wcel 2106   class class class wbr 5074   Or wor 5502  0cc0 10871  *cxr 11008   < clt 11009  -𝑒cxne 12845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-xneg 12848
This theorem is referenced by:  xmulass  13021
  Copyright terms: Public domain W3C validator