MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmulasslem Structured version   Visualization version   GIF version

Theorem xmulasslem 12948
Description: Lemma for xmulass 12950. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xmulasslem.1 (𝑥 = 𝐷 → (𝜓𝑋 = 𝑌))
xmulasslem.2 (𝑥 = -𝑒𝐷 → (𝜓𝐸 = 𝐹))
xmulasslem.x (𝜑𝑋 ∈ ℝ*)
xmulasslem.y (𝜑𝑌 ∈ ℝ*)
xmulasslem.d (𝜑𝐷 ∈ ℝ*)
xmulasslem.ps ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝜓)
xmulasslem.0 (𝜑 → (𝑥 = 0 → 𝜓))
xmulasslem.e (𝜑𝐸 = -𝑒𝑋)
xmulasslem.f (𝜑𝐹 = -𝑒𝑌)
Assertion
Ref Expression
xmulasslem (𝜑𝑋 = 𝑌)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝜑,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem xmulasslem
StepHypRef Expression
1 xmulasslem.d . . 3 (𝜑𝐷 ∈ ℝ*)
2 0xr 10953 . . 3 0 ∈ ℝ*
3 xrltso 12804 . . . 4 < Or ℝ*
4 solin 5519 . . . 4 (( < Or ℝ* ∧ (𝐷 ∈ ℝ* ∧ 0 ∈ ℝ*)) → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
53, 4mpan 686 . . 3 ((𝐷 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
61, 2, 5sylancl 585 . 2 (𝜑 → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷))
7 xlt0neg1 12882 . . . . . 6 (𝐷 ∈ ℝ* → (𝐷 < 0 ↔ 0 < -𝑒𝐷))
81, 7syl 17 . . . . 5 (𝜑 → (𝐷 < 0 ↔ 0 < -𝑒𝐷))
9 xnegcl 12876 . . . . . . 7 (𝐷 ∈ ℝ* → -𝑒𝐷 ∈ ℝ*)
101, 9syl 17 . . . . . 6 (𝜑 → -𝑒𝐷 ∈ ℝ*)
11 breq2 5074 . . . . . . . . 9 (𝑥 = -𝑒𝐷 → (0 < 𝑥 ↔ 0 < -𝑒𝐷))
12 xmulasslem.2 . . . . . . . . 9 (𝑥 = -𝑒𝐷 → (𝜓𝐸 = 𝐹))
1311, 12imbi12d 344 . . . . . . . 8 (𝑥 = -𝑒𝐷 → ((0 < 𝑥𝜓) ↔ (0 < -𝑒𝐷𝐸 = 𝐹)))
1413imbi2d 340 . . . . . . 7 (𝑥 = -𝑒𝐷 → ((𝜑 → (0 < 𝑥𝜓)) ↔ (𝜑 → (0 < -𝑒𝐷𝐸 = 𝐹))))
15 xmulasslem.ps . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝜓)
1615exp32 420 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ* → (0 < 𝑥𝜓)))
1716com12 32 . . . . . . 7 (𝑥 ∈ ℝ* → (𝜑 → (0 < 𝑥𝜓)))
1814, 17vtoclga 3503 . . . . . 6 (-𝑒𝐷 ∈ ℝ* → (𝜑 → (0 < -𝑒𝐷𝐸 = 𝐹)))
1910, 18mpcom 38 . . . . 5 (𝜑 → (0 < -𝑒𝐷𝐸 = 𝐹))
208, 19sylbid 239 . . . 4 (𝜑 → (𝐷 < 0 → 𝐸 = 𝐹))
21 xmulasslem.e . . . . . 6 (𝜑𝐸 = -𝑒𝑋)
22 xmulasslem.f . . . . . 6 (𝜑𝐹 = -𝑒𝑌)
2321, 22eqeq12d 2754 . . . . 5 (𝜑 → (𝐸 = 𝐹 ↔ -𝑒𝑋 = -𝑒𝑌))
24 xmulasslem.x . . . . . 6 (𝜑𝑋 ∈ ℝ*)
25 xmulasslem.y . . . . . 6 (𝜑𝑌 ∈ ℝ*)
26 xneg11 12878 . . . . . 6 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*) → (-𝑒𝑋 = -𝑒𝑌𝑋 = 𝑌))
2724, 25, 26syl2anc 583 . . . . 5 (𝜑 → (-𝑒𝑋 = -𝑒𝑌𝑋 = 𝑌))
2823, 27bitrd 278 . . . 4 (𝜑 → (𝐸 = 𝐹𝑋 = 𝑌))
2920, 28sylibd 238 . . 3 (𝜑 → (𝐷 < 0 → 𝑋 = 𝑌))
30 eqeq1 2742 . . . . . . 7 (𝑥 = 𝐷 → (𝑥 = 0 ↔ 𝐷 = 0))
31 xmulasslem.1 . . . . . . 7 (𝑥 = 𝐷 → (𝜓𝑋 = 𝑌))
3230, 31imbi12d 344 . . . . . 6 (𝑥 = 𝐷 → ((𝑥 = 0 → 𝜓) ↔ (𝐷 = 0 → 𝑋 = 𝑌)))
3332imbi2d 340 . . . . 5 (𝑥 = 𝐷 → ((𝜑 → (𝑥 = 0 → 𝜓)) ↔ (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌))))
34 xmulasslem.0 . . . . 5 (𝜑 → (𝑥 = 0 → 𝜓))
3533, 34vtoclg 3495 . . . 4 (𝐷 ∈ ℝ* → (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌)))
361, 35mpcom 38 . . 3 (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌))
37 breq2 5074 . . . . . . 7 (𝑥 = 𝐷 → (0 < 𝑥 ↔ 0 < 𝐷))
3837, 31imbi12d 344 . . . . . 6 (𝑥 = 𝐷 → ((0 < 𝑥𝜓) ↔ (0 < 𝐷𝑋 = 𝑌)))
3938imbi2d 340 . . . . 5 (𝑥 = 𝐷 → ((𝜑 → (0 < 𝑥𝜓)) ↔ (𝜑 → (0 < 𝐷𝑋 = 𝑌))))
4039, 17vtoclga 3503 . . . 4 (𝐷 ∈ ℝ* → (𝜑 → (0 < 𝐷𝑋 = 𝑌)))
411, 40mpcom 38 . . 3 (𝜑 → (0 < 𝐷𝑋 = 𝑌))
4229, 36, 413jaod 1426 . 2 (𝜑 → ((𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷) → 𝑋 = 𝑌))
436, 42mpd 15 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3o 1084   = wceq 1539  wcel 2108   class class class wbr 5070   Or wor 5493  0cc0 10802  *cxr 10939   < clt 10940  -𝑒cxne 12774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-xneg 12777
This theorem is referenced by:  xmulass  12950
  Copyright terms: Public domain W3C validator