Proof of Theorem xmulasslem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | xmulasslem.d | . . 3
⊢ (𝜑 → 𝐷 ∈
ℝ*) | 
| 2 |  | 0xr 11309 | . . 3
⊢ 0 ∈
ℝ* | 
| 3 |  | xrltso 13184 | . . . 4
⊢  < Or
ℝ* | 
| 4 |  | solin 5618 | . . . 4
⊢ (( <
Or ℝ* ∧ (𝐷 ∈ ℝ* ∧ 0 ∈
ℝ*)) → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷)) | 
| 5 | 3, 4 | mpan 690 | . . 3
⊢ ((𝐷 ∈ ℝ*
∧ 0 ∈ ℝ*) → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷)) | 
| 6 | 1, 2, 5 | sylancl 586 | . 2
⊢ (𝜑 → (𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷)) | 
| 7 |  | xlt0neg1 13262 | . . . . . 6
⊢ (𝐷 ∈ ℝ*
→ (𝐷 < 0 ↔ 0
< -𝑒𝐷)) | 
| 8 | 1, 7 | syl 17 | . . . . 5
⊢ (𝜑 → (𝐷 < 0 ↔ 0 <
-𝑒𝐷)) | 
| 9 |  | xnegcl 13256 | . . . . . . 7
⊢ (𝐷 ∈ ℝ*
→ -𝑒𝐷 ∈
ℝ*) | 
| 10 | 1, 9 | syl 17 | . . . . . 6
⊢ (𝜑 → -𝑒𝐷 ∈
ℝ*) | 
| 11 |  | breq2 5146 | . . . . . . . . 9
⊢ (𝑥 = -𝑒𝐷 → (0 < 𝑥 ↔ 0 <
-𝑒𝐷)) | 
| 12 |  | xmulasslem.2 | . . . . . . . . 9
⊢ (𝑥 = -𝑒𝐷 → (𝜓 ↔ 𝐸 = 𝐹)) | 
| 13 | 11, 12 | imbi12d 344 | . . . . . . . 8
⊢ (𝑥 = -𝑒𝐷 → ((0 < 𝑥 → 𝜓) ↔ (0 < -𝑒𝐷 → 𝐸 = 𝐹))) | 
| 14 | 13 | imbi2d 340 | . . . . . . 7
⊢ (𝑥 = -𝑒𝐷 → ((𝜑 → (0 < 𝑥 → 𝜓)) ↔ (𝜑 → (0 < -𝑒𝐷 → 𝐸 = 𝐹)))) | 
| 15 |  | xmulasslem.ps | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 0 <
𝑥)) → 𝜓) | 
| 16 | 15 | exp32 420 | . . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ* → (0 <
𝑥 → 𝜓))) | 
| 17 | 16 | com12 32 | . . . . . . 7
⊢ (𝑥 ∈ ℝ*
→ (𝜑 → (0 <
𝑥 → 𝜓))) | 
| 18 | 14, 17 | vtoclga 3576 | . . . . . 6
⊢
(-𝑒𝐷 ∈ ℝ* → (𝜑 → (0 <
-𝑒𝐷
→ 𝐸 = 𝐹))) | 
| 19 | 10, 18 | mpcom 38 | . . . . 5
⊢ (𝜑 → (0 <
-𝑒𝐷
→ 𝐸 = 𝐹)) | 
| 20 | 8, 19 | sylbid 240 | . . . 4
⊢ (𝜑 → (𝐷 < 0 → 𝐸 = 𝐹)) | 
| 21 |  | xmulasslem.e | . . . . . 6
⊢ (𝜑 → 𝐸 = -𝑒𝑋) | 
| 22 |  | xmulasslem.f | . . . . . 6
⊢ (𝜑 → 𝐹 = -𝑒𝑌) | 
| 23 | 21, 22 | eqeq12d 2752 | . . . . 5
⊢ (𝜑 → (𝐸 = 𝐹 ↔ -𝑒𝑋 = -𝑒𝑌)) | 
| 24 |  | xmulasslem.x | . . . . . 6
⊢ (𝜑 → 𝑋 ∈
ℝ*) | 
| 25 |  | xmulasslem.y | . . . . . 6
⊢ (𝜑 → 𝑌 ∈
ℝ*) | 
| 26 |  | xneg11 13258 | . . . . . 6
⊢ ((𝑋 ∈ ℝ*
∧ 𝑌 ∈
ℝ*) → (-𝑒𝑋 = -𝑒𝑌 ↔ 𝑋 = 𝑌)) | 
| 27 | 24, 25, 26 | syl2anc 584 | . . . . 5
⊢ (𝜑 →
(-𝑒𝑋 =
-𝑒𝑌
↔ 𝑋 = 𝑌)) | 
| 28 | 23, 27 | bitrd 279 | . . . 4
⊢ (𝜑 → (𝐸 = 𝐹 ↔ 𝑋 = 𝑌)) | 
| 29 | 20, 28 | sylibd 239 | . . 3
⊢ (𝜑 → (𝐷 < 0 → 𝑋 = 𝑌)) | 
| 30 |  | eqeq1 2740 | . . . . . . 7
⊢ (𝑥 = 𝐷 → (𝑥 = 0 ↔ 𝐷 = 0)) | 
| 31 |  | xmulasslem.1 | . . . . . . 7
⊢ (𝑥 = 𝐷 → (𝜓 ↔ 𝑋 = 𝑌)) | 
| 32 | 30, 31 | imbi12d 344 | . . . . . 6
⊢ (𝑥 = 𝐷 → ((𝑥 = 0 → 𝜓) ↔ (𝐷 = 0 → 𝑋 = 𝑌))) | 
| 33 | 32 | imbi2d 340 | . . . . 5
⊢ (𝑥 = 𝐷 → ((𝜑 → (𝑥 = 0 → 𝜓)) ↔ (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌)))) | 
| 34 |  | xmulasslem.0 | . . . . 5
⊢ (𝜑 → (𝑥 = 0 → 𝜓)) | 
| 35 | 33, 34 | vtoclg 3553 | . . . 4
⊢ (𝐷 ∈ ℝ*
→ (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌))) | 
| 36 | 1, 35 | mpcom 38 | . . 3
⊢ (𝜑 → (𝐷 = 0 → 𝑋 = 𝑌)) | 
| 37 |  | breq2 5146 | . . . . . . 7
⊢ (𝑥 = 𝐷 → (0 < 𝑥 ↔ 0 < 𝐷)) | 
| 38 | 37, 31 | imbi12d 344 | . . . . . 6
⊢ (𝑥 = 𝐷 → ((0 < 𝑥 → 𝜓) ↔ (0 < 𝐷 → 𝑋 = 𝑌))) | 
| 39 | 38 | imbi2d 340 | . . . . 5
⊢ (𝑥 = 𝐷 → ((𝜑 → (0 < 𝑥 → 𝜓)) ↔ (𝜑 → (0 < 𝐷 → 𝑋 = 𝑌)))) | 
| 40 | 39, 17 | vtoclga 3576 | . . . 4
⊢ (𝐷 ∈ ℝ*
→ (𝜑 → (0 <
𝐷 → 𝑋 = 𝑌))) | 
| 41 | 1, 40 | mpcom 38 | . . 3
⊢ (𝜑 → (0 < 𝐷 → 𝑋 = 𝑌)) | 
| 42 | 29, 36, 41 | 3jaod 1430 | . 2
⊢ (𝜑 → ((𝐷 < 0 ∨ 𝐷 = 0 ∨ 0 < 𝐷) → 𝑋 = 𝑌)) | 
| 43 | 6, 42 | mpd 15 | 1
⊢ (𝜑 → 𝑋 = 𝑌) |